From: | Alena Rybakina <a(dot)rybakina(at)postgrespro(dot)ru> |
---|---|
To: | Ba Jinsheng <bajinsheng(at)u(dot)nus(dot)edu>, "pgsql-performance(at)lists(dot)postgresql(dot)org" <pgsql-performance(at)lists(dot)postgresql(dot)org>, "lepihov(at)gmail(dot)com" <lepihov(at)gmail(dot)com> |
Subject: | Re: Performance of Query 4 on TPC-DS Benchmark |
Date: | 2024-11-10 20:16:48 |
Message-ID: | f1b0fa27-dba4-4025-9113-eeb3e251b256@postgrespro.ru |
Views: | Raw Message | Whole Thread | Download mbox | Resend email |
Thread: | |
Lists: | pgsql-performance |
Hi!
On 10.11.2024 22:35, Ba Jinsheng wrote:
> Hi all,
>
> Please see this case:
>
>
> Query 4 on TPC-DS benchmark:
>
> with year_total as (
> select c_customer_id customer_id
> ,c_first_name customer_first_name
> ,c_last_name customer_last_name
> ,c_preferred_cust_flag customer_preferred_cust_flag
> ,c_birth_country customer_birth_country
> ,c_login customer_login
> ,c_email_address customer_email_address
> ,d_year dyear
> ,sum(((ss_ext_list_price-ss_ext_wholesale_cost-ss_ext_discount_amt)+ss_ext_sales_price)/2)
> year_total
> ,'s' sale_type
> from customer
> ,store_sales
> ,date_dim
> where c_customer_sk = ss_customer_sk
> and ss_sold_date_sk = d_date_sk
> group by c_customer_id
> ,c_first_name
> ,c_last_name
> ,c_preferred_cust_flag
> ,c_birth_country
> ,c_login
> ,c_email_address
> ,d_year
> union all
> select c_customer_id customer_id
> ,c_first_name customer_first_name
> ,c_last_name customer_last_name
> ,c_preferred_cust_flag customer_preferred_cust_flag
> ,c_birth_country customer_birth_country
> ,c_login customer_login
> ,c_email_address customer_email_address
> ,d_year dyear
> ,sum((((cs_ext_list_price-cs_ext_wholesale_cost-cs_ext_discount_amt)+cs_ext_sales_price)/2)
> ) year_total
> ,'c' sale_type
> from customer
> ,catalog_sales
> ,date_dim
> where c_customer_sk = cs_bill_customer_sk
> and cs_sold_date_sk = d_date_sk
> group by c_customer_id
> ,c_first_name
> ,c_last_name
> ,c_preferred_cust_flag
> ,c_birth_country
> ,c_login
> ,c_email_address
> ,d_year
> union all
> select c_customer_id customer_id
> ,c_first_name customer_first_name
> ,c_last_name customer_last_name
> ,c_preferred_cust_flag customer_preferred_cust_flag
> ,c_birth_country customer_birth_country
> ,c_login customer_login
> ,c_email_address customer_email_address
> ,d_year dyear
> ,sum((((ws_ext_list_price-ws_ext_wholesale_cost-ws_ext_discount_amt)+ws_ext_sales_price)/2)
> ) year_total
> ,'w' sale_type
> from customer
> ,web_sales
> ,date_dim
> where c_customer_sk = ws_bill_customer_sk
> and ws_sold_date_sk = d_date_sk
> group by c_customer_id
> ,c_first_name
> ,c_last_name
> ,c_preferred_cust_flag
> ,c_birth_country
> ,c_login
> ,c_email_address
> ,d_year
> )
> select
> t_s_secyear.customer_id
> ,t_s_secyear.customer_first_name
> ,t_s_secyear.customer_last_name
> ,t_s_secyear.customer_email_address
> from year_total t_s_firstyear
> ,year_total t_s_secyear
> ,year_total t_c_firstyear
> ,year_total t_c_secyear
> ,year_total t_w_firstyear
> ,year_total t_w_secyear
> where t_s_secyear.customer_id = t_s_firstyear.customer_id
> and t_s_firstyear.customer_id = t_c_secyear.customer_id
> and t_s_firstyear.customer_id = t_c_firstyear.customer_id
> and t_s_firstyear.customer_id = t_w_firstyear.customer_id
> and t_s_firstyear.customer_id = t_w_secyear.customer_id
> and t_s_firstyear.sale_type = 's'
> and t_c_firstyear.sale_type = 'c'
> and t_w_firstyear.sale_type = 'w'
> and t_s_secyear.sale_type = 's'
> and t_c_secyear.sale_type = 'c'
> and t_w_secyear.sale_type = 'w'
> and t_s_firstyear.dyear = 2001
> and t_s_secyear.dyear = 2001+1
> and t_c_firstyear.dyear = 2001
> and t_c_secyear.dyear = 2001+1
> and t_w_firstyear.dyear = 2001
> and t_w_secyear.dyear = 2001+1
> and t_s_firstyear.year_total > 0
> and t_c_firstyear.year_total > 0
> and t_w_firstyear.year_total > 0
> and case when t_c_firstyear.year_total > 0 then
> t_c_secyear.year_total / t_c_firstyear.year_total else null end
> > case when t_s_firstyear.year_total > 0 then
> t_s_secyear.year_total / t_s_firstyear.year_total else null end
> and case when t_c_firstyear.year_total > 0 then
> t_c_secyear.year_total / t_c_firstyear.year_total else null end
> > case when t_w_firstyear.year_total > 0 then
> t_w_secyear.year_total / t_w_firstyear.year_total else null end
> order by t_s_secyear.customer_id
> ,t_s_secyear.customer_first_name
> ,t_s_secyear.customer_last_name
> ,t_s_secyear.customer_email_address
> limit 100;
>
>
>
>
>
> The execution time is more than 50 minutes:
> QUERY PLAN
> ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
> Limit (cost=1255378.56..1255378.57 rows=1 width=132) (actual
> time=3024403.311..3024403.342 rows=8 loops=1)
> CTE year_total
> -> Append (cost=197433.23..461340.62 rows=5041142 width=216)
> (actual time=4126.043..7897.747 rows=384208 loops=1)
> -> HashAggregate (cost=197433.23..233436.60 rows=2880270
> width=216) (actual time=4126.042..4231.703 rows=190581 loops=1)
> Group Key: customer.c_customer_id,
> customer.c_first_name, customer.c_last_name,
> customer.c_preferred_cust_flag, customer.c_birth_country,
> customer.c_login, customer.c_email_address, date_dim.d_year
> Batches: 1 Memory Usage: 213017kB
> -> Hash Join (cost=8151.60..103824.45 rows=2880270
> width=174) (actual time=69.110..1686.608 rows=2685453 loops=1)
> Hash Cond: (store_sales.ss_sold_date_sk =
> date_dim.d_date_sk)
> -> Hash Join (cost=5103.00..93214.72
> rows=2880270 width=174) (actual time=49.517..1162.567 rows=2750652
> loops=1)
> Hash Cond: (store_sales.ss_customer_sk =
> customer.c_customer_sk)
> -> Seq Scan on store_sales
> (cost=0.00..80550.70 rows=2880270 width=30) (actual
> time=0.018..208.022 rows=2880404 loops=1)
> -> Hash (cost=3853.00..3853.00
> rows=100000 width=152) (actual time=49.271..49.271 rows=100000 loops=1)
> Buckets: 131072 Batches: 1 Memory
> Usage: 17161kB
> -> Seq Scan on customer
> (cost=0.00..3853.00 rows=100000 width=152) (actual time=0.011..26.448
> rows=100000 loops=1)
> -> Hash (cost=2135.49..2135.49 rows=73049
> width=8) (actual time=19.369..19.370 rows=73049 loops=1)
> Buckets: 131072 Batches: 1 Memory
> Usage: 3878kB
> -> Seq Scan on date_dim
> (cost=0.00..2135.49 rows=73049 width=8) (actual time=0.037..11.763
> rows=73049 loops=1)
> -> HashAggregate (cost=114410.03..132428.63 rows=1441488
> width=216) (actual time=2369.202..2447.868 rows=136978 loops=1)
> Group Key: customer_1.c_customer_id,
> customer_1.c_first_name, customer_1.c_last_name,
> customer_1.c_preferred_cust_flag, customer_1.c_birth_country,
> customer_1.c_login, customer_1.c_email_address, date_dim_1.d_year
> Batches: 1 Memory Usage: 131097kB
> -> Hash Join (cost=8151.60..67561.67 rows=1441488
> width=177) (actual time=62.483..974.143 rows=1430939 loops=1)
> Hash Cond: (catalog_sales.cs_sold_date_sk =
> date_dim_1.d_date_sk)
> -> Hash Join (cost=5103.00..60728.94
> rows=1441488 width=177) (actual time=46.571..687.972 rows=1434519 loops=1)
> Hash Cond:
> (catalog_sales.cs_bill_customer_sk = customer_1.c_customer_sk)
> -> Seq Scan on catalog_sales
> (cost=0.00..51841.88 rows=1441488 width=33) (actual
> time=0.029..128.238 rows=1441548 loops=1)
> -> Hash (cost=3853.00..3853.00
> rows=100000 width=152) (actual time=46.311..46.325 rows=100000 loops=1)
> Buckets: 131072 Batches: 1 Memory
> Usage: 17161kB
> -> Seq Scan on customer customer_1
> (cost=0.00..3853.00 rows=100000 width=152) (actual time=0.005..23.350
> rows=100000 loops=1)
> -> Hash (cost=2135.49..2135.49 rows=73049
> width=8) (actual time=15.677..15.677 rows=73049 loops=1)
> Buckets: 131072 Batches: 1 Memory
> Usage: 3878kB
> -> Seq Scan on date_dim date_dim_1
> (cost=0.00..2135.49 rows=73049 width=8) (actual time=0.015..7.957
> rows=73049 loops=1)
> -> HashAggregate (cost=61277.38..70269.68 rows=719384
> width=216) (actual time=1166.953..1198.730 rows=56649 loops=1)
> Group Key: customer_2.c_customer_id,
> customer_2.c_first_name, customer_2.c_last_name,
> customer_2.c_preferred_cust_flag, customer_2.c_birth_country,
> customer_2.c_login, customer_2.c_email_address, date_dim_2.d_year
> Batches: 1 Memory Usage: 57369kB
> -> Hash Join (cost=8151.60..37897.40 rows=719384
> width=177) (actual time=68.327..508.594 rows=719119 loops=1)
> Hash Cond: (web_sales.ws_sold_date_sk =
> date_dim_2.d_date_sk)
> -> Hash Join (cost=5103.00..32960.30
> rows=719384 width=177) (actual time=52.240..357.963 rows=719217 loops=1)
> Hash Cond: (web_sales.ws_bill_customer_sk
> = customer_2.c_customer_sk)
> -> Seq Scan on web_sales
> (cost=0.00..25968.84 rows=719384 width=33) (actual time=0.032..62.464
> rows=719384 loops=1)
> -> Hash (cost=3853.00..3853.00
> rows=100000 width=152) (actual time=51.959..51.960 rows=100000 loops=1)
> Buckets: 131072 Batches: 1 Memory
> Usage: 17161kB
> -> Seq Scan on customer customer_2
> (cost=0.00..3853.00 rows=100000 width=152) (actual time=0.004..25.350
> rows=100000 loops=1)
> -> Hash (cost=2135.49..2135.49 rows=73049
> width=8) (actual time=15.831..15.834 rows=73049 loops=1)
> Buckets: 131072 Batches: 1 Memory
> Usage: 3878kB
> -> Seq Scan on date_dim date_dim_2
> (cost=0.00..2135.49 rows=73049 width=8) (actual time=0.014..8.100
> rows=73049 loops=1)
> -> Sort (cost=794037.94..794037.95 rows=1 width=132) (actual
> time=3024403.310..3024403.313 rows=8 loops=1)
> Sort Key: t_s_secyear.customer_id,
> t_s_secyear.customer_first_name, t_s_secyear.customer_last_name,
> t_s_secyear.customer_email_address
> Sort Method: quicksort Memory: 26kB
> -> Nested Loop (cost=0.00..794037.93 rows=1 width=132)
> (actual time=354851.431..3024403.218 rows=8 loops=1)
> Join Filter: ((t_s_secyear.customer_id =
> t_w_secyear.customer_id) AND (CASE WHEN (t_c_firstyear.year_total >
> '0'::numeric) THEN (t_c_secyear.year_total / t_c_firstyear.year_total)
> ELSE NULL::numeric END > CASE WHEN (t_w_firstyear.year_total >
> '0'::numeric) THEN (t_w_secyear.year_total / t_w_firstyear.year_total)
> ELSE NULL::numeric END))
> Rows Removed by Join Filter: 810136
> -> Nested Loop (cost=0.00..668006.23 rows=1
> width=308) (actual time=33554.075..3021248.646 rows=72 loops=1)
> Join Filter: ((t_s_secyear.customer_id =
> t_c_secyear.customer_id) AND (CASE WHEN (t_c_firstyear.year_total >
> '0'::numeric) THEN (t_c_secyear.year_total / t_c_firstyear.year_total)
> ELSE NULL::numeric END > CASE WHEN (t_s_firstyear.year_total >
> '0'::numeric) THEN (t_s_secyear.year_total / t_s_firstyear.year_total)
> ELSE NULL::numeric END))
> Rows Removed by Join Filter: 11876277
> * -> Nested Loop (cost=0.00..541974.53 rows=1 width=320) (actual
> time=14866.104..3001271.961 rows=437 loops=1)*
> * Join Filter: (t_s_firstyear.customer_id =
> t_s_secyear.customer_id)*
> * Rows Removed by Join Filter: 44702488*
> * -> Nested Loop (cost=0.00..415941.57
> rows=2 width=156) (actual time=11739.944..2946020.749 rows=1171 loops=1)*
> * Join Filter:
> (t_s_firstyear.customer_id = t_w_firstyear.customer_id)*
> * Rows Removed by Join Filter: 112695277*
> * -> Nested Loop
> (cost=0.00..277302.08 rows=9 width=104) (actual
> time=8139.729..2351733.795 rows=9952 loops=1)*
> * Join Filter:
> (t_s_firstyear.customer_id = t_c_firstyear.customer_id)*
> * Rows Removed by Join Filter:
> 997895870*
> * -> CTE Scan on year_total
> t_s_firstyear (cost=0.00..138631.41 rows=42 width=52) (actual
> time=4126.046..4234.598 rows=37923 loops=1)*
> * Filter: ((year_total >
> '0'::numeric) AND (sale_type = 's'::text) AND (dyear = 2001))*
> * Rows Removed by Filter:
> 346285*
> * -> CTE Scan on year_total
> t_c_firstyear (cost=0.00..138631.41 rows=42 width=52) (actual
> time=28.926..60.356 rows=26314 loops=37923)*
> * Filter: ((year_total >
> '0'::numeric) AND (sale_type = 'c'::text) AND (dyear = 2001))*
> * Rows Removed by Filter:
> 357894*
> * -> CTE Scan on year_total
> t_w_firstyear (cost=0.00..138631.41 rows=42 width=52) (actual
> time=49.572..59.057 rows=11324 loops=9952)*
> * Filter: ((year_total >
> '0'::numeric) AND (sale_type = 'w'::text) AND (dyear = 2001))*
> * Rows Removed by Filter: 372884*
> * -> CTE Scan on year_total t_s_secyear
> (cost=0.00..126028.55 rows=126 width=164) (actual time=0.002..44.949
> rows=38175 loops=1171)*
> * Filter: ((sale_type = 's'::text) AND
> (dyear = 2002))*
> * Rows Removed by Filter: 346033*
> * -> CTE Scan on year_total t_c_secyear
> (cost=0.00..126028.55 rows=126 width=52) (actual time=21.023..44.097
> rows=27177 loops=437)*
> * Filter: ((sale_type = 'c'::text) AND
> (dyear = 2002))*
> * Rows Removed by Filter: 357031*
> * -> CTE Scan on year_total t_w_secyear
> (cost=0.00..126028.55 rows=126 width=52) (actual time=36.137..43.090
> rows=11252 loops=72)*
> * Filter: ((sale_type = 'w'::text) AND (dyear =
> 2002))*
> * Rows Removed by Filter: 372956*
> Planning Time: 4.529 ms
> Execution Time: 3024486.695 ms
> (83 rows)
>
>
>
I have noticed significant underestimation here. In addition, these
nodes are executed noticeably slower in the plan, you can see it by the
current time in the explain.
Have you tried any tools to improve the cardinality yet, like aqo [0]?
[0] https://github.com/postgrespro/aqo
--
Regards,
Alena Rybakina
Postgres Professional
From | Date | Subject | |
---|---|---|---|
Next Message | Alena Rybakina | 2024-11-10 20:18:47 | Re: Performance of Query 4 on TPC-DS Benchmark |
Previous Message | Thomas Munro | 2024-11-10 19:58:49 | Re: Performance of Query 4 on TPC-DS Benchmark |