From: | Merlin Moncure <mmoncure(at)gmail(dot)com> |
---|---|
To: | Pavel Stehule <pavel(dot)stehule(at)gmail(dot)com> |
Cc: | PostgreSQL Hackers <pgsql-hackers(at)postgresql(dot)org> |
Subject: | Re: possible optimization: push down aggregates |
Date: | 2014-08-27 19:41:58 |
Message-ID: | CAHyXU0wjF=3EOPp=YhHtzBp3Yd=8Jg9sLinFS6Hi-wa8Ui0tQw@mail.gmail.com |
Views: | Raw Message | Whole Thread | Download mbox | Resend email |
Thread: | |
Lists: | pgsql-hackers |
On Wed, Aug 27, 2014 at 2:07 PM, Pavel Stehule <pavel(dot)stehule(at)gmail(dot)com> wrote:
> Hi
>
> one user asked about using a partitioning for faster aggregates queries.
>
> I found so there is not any optimization.
>
> create table x1(a int, d date);
> create table x_1 ( check(d = '2014-01-01'::date)) inherits(x1);
> create table x_2 ( check(d = '2014-01-02'::date)) inherits(x1);
> create table x_3 ( check(d = '2014-01-03'::date)) inherits(x1);
>
> When I have this schema, then optimizer try to do
>
> postgres=# explain verbose select max(a) from x1 group by d order by d;
> QUERY PLAN
> --------------------------------------------------------------------------------
> GroupAggregate (cost=684.79..750.99 rows=200 width=8)
> Output: max(x1.a), x1.d
> Group Key: x1.d
> -> Sort (cost=684.79..706.19 rows=8561 width=8)
> Output: x1.d, x1.a
> Sort Key: x1.d
> -> Append (cost=0.00..125.60 rows=8561 width=8)
> -> Seq Scan on public.x1 (cost=0.00..0.00 rows=1 width=8)
> Output: x1.d, x1.a
> -> Seq Scan on public.x_1 (cost=0.00..31.40 rows=2140
> width=8)
> Output: x_1.d, x_1.a
> -> Seq Scan on public.x_2 (cost=0.00..31.40 rows=2140
> width=8)
> Output: x_2.d, x_2.a
> -> Seq Scan on public.x_3 (cost=0.00..31.40 rows=2140
> width=8)
> Output: x_3.d, x_3.a
> -> Seq Scan on public.x_4 (cost=0.00..31.40 rows=2140
> width=8)
> Output: x_4.d, x_4.a
> Planning time: 0.333 ms
>
> It can be reduced to:
>
> sort by d
> Append
> Aggegate (a), d
> seq scan from x_1
> Aggregate (a), d
> seq scan from x_2
>
> Are there some plans to use partitioning for aggregation?
Besides min/max, what other aggregates (mean/stddev come to mind)
would you optimize and how would you determine which ones could be?
Where is that decision made?
For example, could user defined aggregates be pushed down if you had a
reaggregation routine broken out from the main one?
merlin
From | Date | Subject | |
---|---|---|---|
Next Message | Claudio Freire | 2014-08-27 19:46:24 | Re: possible optimization: push down aggregates |
Previous Message | Pavel Stehule | 2014-08-27 19:07:23 | possible optimization: push down aggregates |