Re: Query with straightforward plan changes and becomes 6520 times slower after VACUUM ANALYZE

From: Pavel Stehule <pavel(dot)stehule(at)gmail(dot)com>
To: Jan Kort <jan(dot)kort(at)genetics(dot)nl>
Cc: "pgsql-bugs(at)lists(dot)postgresql(dot)org" <pgsql-bugs(at)lists(dot)postgresql(dot)org>
Subject: Re: Query with straightforward plan changes and becomes 6520 times slower after VACUUM ANALYZE
Date: 2021-05-18 14:02:09
Message-ID: CAFj8pRAKo9JUWnEXyYbMbknYWuRXxCLubU0Yu3HhVLUGM1ci3Q@mail.gmail.com
Views: Raw Message | Whole Thread | Download mbox | Resend email
Thread:
Lists: pgsql-bugs

Hi

út 18. 5. 2021 v 15:36 odesílatel Jan Kort <jan(dot)kort(at)genetics(dot)nl> napsal:

> Hi,
>
>
>
> I tried this on both PostgreSQL 12.7 and 13.3, I tried both VACUUM ANALYZE
> and VACUUM FULL ANALYZE, they both seem to change a straightforward plan
> to a reversed and complex plan that make the query slow. The only thing
> that works is to do a pg_dump, pg_restore, but that is not feasible.
>
>
>
> It seems to depend on specific data, I tried generating other variations
> of around 1M records, but so far the attached DB (also generated) is the
> only one where I could reproduce it, I can’t figure out what is so special
> about this data.
>
>
>
> Given the following record counts:
>
>
>
> GFO_ZAKEN: 1048587
>
> GFO_ZAKEN_KOSTEN: 3
>
> GFO_ZAKEN_TYPECODE: 4
>
> GFO_ZAKEN.ZAAKTYPECODE_ID has a value 9 times and the rest is null
>
>
>
> When I run this query:
>
>
>
> EXPLAIN ANALYZE
>
> *SELECT* GFO_ZAKEN_KOSTEN*.*ID *AS* GFO_ZAKEN_KOSTEN_ID*,*
>
> GFO_ZAKEN*.*ID *AS* GFO_ZAKEN_ID*,*
>
> GFO_ZAKEN_TYPECODE*.*OMSCHRIJVING *AS* ZAAKTYPECODE_ID
>
> *FROM* TRIAL*.*GFO_ZAKEN_KOSTEN
>
> *JOIN* TRIAL*.*GFO_ZAKEN *ON* GFO_ZAKEN_KOSTEN*.*GFO_ZAKEN_ID *=*
> GFO_ZAKEN*.*ID
>
> *JOIN* TRIAL*.*GFO_ZAKEN_TYPECODE *ON* GFO_ZAKEN*.*ZAAKTYPECODE_ID *=*
> GFO_ZAKEN_TYPECODE*.*ID
>
>
>
> It is taking 500ms or so, which I associate with a full table scan, but
> they are just simple referential constraints and corresponding indexes:
>
>
>
> *CREATE* *TABLE* TRIAL*.*GFO_ZAKEN_TYPECODE *(*ID *INTEGER* *PRIMARY*
> *KEY**,* OMSCHRIJVING *CHARACTER* *VARYING**(*4000*));*
>
> *CREATE* *TABLE* TRIAL*.*GFO_ZAKEN *(*ID *INTEGER* *PRIMARY* *KEY**,*
> ZAAKTYPECODE_ID *INTEGER**,*
>
> *CONSTRAINT* ZAAKTYPECODE_IDC1 *FOREIGN* *KEY* *(*ZAAKTYPECODE_ID*)*
> *REFERENCES* TRIAL*.*GFO_ZAKEN_TYPECODE *(*ID*));*
>
> *CREATE* *INDEX* GFO_ZAKENO18 *ON* TRIAL*.*GFO_ZAKEN *USING* BTREE *(*
> ZAAKTYPECODE_ID*);*
>
> *CREATE* *TABLE* TRIAL*.*GFO_ZAKEN_KOSTEN *(*ID *INTEGER* *PRIMARY* *KEY*
> *,* GFO_ZAKEN_ID *INTEGER**,*
>
> *CONSTRAINT* GFO_ZAKEN_IDC1 *FOREIGN* *KEY* *(*GFO_ZAKEN_ID*)*
> *REFERENCES* TRIAL*.*GFO_ZAKEN *(*ID*));*
>
> *CREATE* *INDEX* GFO_ZAKEN_KOSTENO14 *ON* TRIAL*.*GFO_ZAKEN_KOSTEN *USING*
> BTREE *(*GFO_ZAKEN_ID *ASC* NULLS *LAST**);*
>
>
>
> After pg_restore it gives a straightforward plan, starting with the
> gfo_zaken_kosten primary key and continuing with the join on
> gfo_zaken_kosten.gfo_zaken_id:
>
>
>
> Nested Loop (cost=0.56..3.64 rows=1 width=524) (actual time=0.036..0.037
> rows=1 loops=1)
>
> -> Nested Loop (cost=0.43..3.48 rows=1 width=12) (actual
> time=0.030..0.030 rows=1 loops=1)
>
> -> Seq Scan on gfo_zaken_kosten (cost=0.00..1.04 rows=1 width=8)
> (actual time=0.016..0.016 rows=1 loops=1)
>
> Filter: (id = 13)
>
> Rows Removed by Filter: 2
>
> -> Index Scan using gfo_zakenp on gfo_zaken (cost=0.43..2.45
> rows=1 width=8) (actual time=0.012..0.012 rows=1 loops=1)
>
> Index Cond: (id = gfo_zaken_kosten.gfo_zaken_id)
>
> -> Index Scan using gfo_zaken_typecodep on gfo_zaken_typecode
> (cost=0.13..0.15 rows=1 width=520) (actual time=0.005..0.005 rows=1 loops=1)
>
> Index Cond: (id = gfo_zaken.zaaktypecode_id)
>
> Planning Time: 1.538 ms
>
> Execution Time: 0.095 ms
>
>
>
> After VACUUM ANALYZE the plan becomes inefficient again, and does not
> start with the gfo_zaken_kosten primary key, the plan starts at the wrong
> end with an index scan on 1M rows:
>
>
>
> Merge Join (cost=1.48..1.59 rows=1 width=159) (actual
> time=619.374..619.376 rows=1 loops=1)
>
> Merge Cond: (gfo_zaken.id = gfo_zaken_kosten.gfo_zaken_id)
>
> -> Nested Loop (cost=0.43..96503.47 rows=1048587 width=155) (actual
> time=0.022..619.359 rows=9 loops=1)
>
> Join Filter: (gfo_zaken.zaaktypecode_id = gfo_zaken_typecode.id)
>
> Rows Removed by Join Filter: 4194316
>
> -> Index Scan using gfo_zakenp on gfo_zaken (cost=0.43..33587.23
> rows=1048587 width=8) (actual time=0.006..141.167 rows=1048587 loops=1)
>
> -> Materialize (cost=0.00..1.06 rows=4 width=155) (actual
> time=0.000..0.000 rows=4 loops=1048587)
>
> -> Seq Scan on gfo_zaken_typecode (cost=0.00..1.04 rows=4
> width=155) (actual time=0.011..0.012 rows=4 loops=1)
>
> -> Sort (cost=1.05..1.05 rows=1 width=8) (actual time=0.012..0.012
> rows=1 loops=1)
>
> Sort Key: gfo_zaken_kosten.gfo_zaken_id
>
> Sort Method: quicksort Memory: 25kB
>
> -> Seq Scan on gfo_zaken_kosten (cost=0.00..1.04 rows=1 width=8)
> (actual time=0.008..0.008 rows=1 loops=1)
>
> Filter: (id = 13)
>
> Rows Removed by Filter: 2
>
> Planning Time: 69.151 ms
>
> Execution Time: 619.410 ms
>
>
>

This is not a bug. You can see very bad estimation on join. Postgres
expects one value has the same probability in both tables. In your case, it
is not true. Unfortunately, Postgres has not multi table statistics, so
there is no easy solution. Usually you need to divide your query to two.
And maybe you can check your data, why the predicate
gfo_zaken.zaaktypecode_id = gfo_zaken_typecode.id is almost ivalid.

Regards

Pavel Stehule

So 6520 times slower after vacuum analyze then before.
>
>
>
> Doing VACUUM ANALYZE again doesn’t make it better, only pg_dump +
> pg_restore will go back to the original plan, but then it will break again
> on the first VACUUM ANALYZE.
>
>
>
> I attached a 800K test DB with all sensitive data removed.
>
>
>
> I tried both the default config without changes, and the default config
> with our settings appended:
>
>
>
> max_connections = 1000
>
> shared_buffers = 512MB
>
> effective_cache_size = 6GB
>
> work_mem = 10485kB
>
> maintenance_work_mem = 512MB
>
> min_wal_size = 1GB
>
> max_wal_size = 2GB
>
> checkpoint_completion_target = 0.7
>
> wal_buffers = 16MB
>
> default_statistics_target = 100
>
> random_page_cost = 1
>
> wal_sync_method = open_datasync
>
> fsync = on
>
> synchronous_commit = off
>
>
>
> Doing a VACUUM ANALYZE shouldn’t change a straightforward plan.
>
>
>
> Regards,
>
>
>
> Jan Kort
>
>
>
>
>

In response to

Responses

Browse pgsql-bugs by date

  From Date Subject
Next Message Tom Lane 2021-05-18 16:18:19 Re: BUG #17017: Two versions of the same row of records are returned in one query
Previous Message PG Bug reporting form 2021-05-18 13:49:19 BUG #17018: Two versions of the same row of records are returned in one query