From: | Kevin Grittner <kgrittn(at)ymail(dot)com> |
---|---|
To: | Merlin Moncure <mmoncure(at)gmail(dot)com>, Nikita Volkov <nikita(dot)y(dot)volkov(at)mail(dot)ru> |
Cc: | Greg Stark <stark(at)mit(dot)edu>, Tom Lane <tgl(at)sss(dot)pgh(dot)pa(dot)us>, Josh Berkus <josh(at)agliodbs(dot)com>, "pgsql-hackers(at)postgresql(dot)org" <pgsql-hackers(at)postgresql(dot)org> |
Subject: | Re: BUG #12330: ACID is broken for unique constraints |
Date: | 2014-12-29 21:53:25 |
Message-ID: | 2012416048.1469125.1419890005044.JavaMail.yahoo@jws100170.mail.ne1.yahoo.com |
Views: | Raw Message | Whole Thread | Download mbox | Resend email |
Thread: | |
Lists: | pgsql-bugs pgsql-hackers |
Merlin Moncure <mmoncure(at)gmail(dot)com> wrote:
> On Mon, Dec 29, 2014 at 10:53 AM, Kevin Grittner <kgrittn(at)ymail(dot)com> wrote:
>> The semantics are so imprecise that Tom argued that we should
>> document that transactions should be retried from the start when
>> you get the duplicate key error, since it *might* have been caused
>> by a race condition.
> That sounds off to me also. In terms of a classic uniqueness
> constraint (say, a identifying user name), every violation is
> technically a race condition -- whether or not the transactions
> overlap on time is completely irrelevant.
That is completely bogus. The point is that if you return a
serialization failure the transaction should be immediately retried
from the beginning (including, in many cases, acquiring key
values). If the error was caused by concurrent insertion of a
duplicate key where the transaction does *not* acquire the value
within the transaction, *then* you get the duplicate key error on
the retry.
> If the transactions
> touching off the error happen to overlap or not is an accident of
> timing and irrelevant; a serialization error suggests that the
> transaction should be retried when in fact it shouldn't be,
> particularly just to get the *actual* error. What if the transaction
> is non-trivial? Why do we want to bother our users about those
> details at all?
Where serializable transactions are used to manage race conditions
the users typically do not see them. The application code does not
see them. There is normally some sort of framework (possibly using
dependency injection, although not necessarily) which catches these
and retries the transaction from the start without notifying the
user or letting the application software know that it happened.
There is normally some server-side logging so that high volumes of
rollbacks can be identified and fixed. In a real-world situation
where this was used for 100 production databases running millions
of transactions per day, I saw about 10 or 20 serialization
failures per day across the whole set of database servers.
While I have certainly heard of workloads where it didn't work out
that well, Dan Ports found that many common benchmarks perform
about that well. Quoting from the peer-reviewed paper presented in
Istanbul[1]:
| SSI outperforms S2PL for all transaction mixes, and does so by a
| significant margin when the fraction of read-only transactions is
| high. On these workloads, there are more rw-conflicts between
| concurrent transactions, so locking imposes a larger performance
| penalty. (The 100%-read-only workload is a special case; there are
| no lock conflicts under S2PL, and SSI has no overhead because all
| snapshots are safe.) The 150-warehouse configuration (Figure 5b )
| behaves similarly, but the differences are less pronounced: on this
| disk-bound benchmark, CPU overhead is not a factor, and improved
| concurrency has a limited benefit. Here, the performance of SSI
| is indistinguishable from that of SI. Transactions rarely need to
| be retried; in all cases, the serialization failure rate was under
| 0.25%.
> Consider the 'idiomatic upsert' as it exists in the documentation (!):
That documentation should probably be updated to indicate which
isolation levels need that code. If you are relying on
serializable transactions that dance is unnecessary and pointless.
The rule when relying on serializable transactions is that you
write the code to behave correctly if the transaction executing it
is running by itself. Period. No special handling for race
conditions. Detecting race conditions is the job of the database
engine and retrying affected transactions is the job of the
framework. Absolutely nobody who understands serializable
transactions would use that idiom inside of serializable
transactions.
> By changing the error code, for decades worth of dealing with this
> problem, you've just converted a server side loop to a full round
> trip, and, if the user does not automatically retry serialization
> failures, broken his/her code.
If they are not automatically retrying on serialization failures,
they should probably not be using serializable transactions. That
is rather the point. No need for table locks. No need for SELECT
FOR UPDATE. No need to special-case for concurrent transactions.
"Just do it." Let the framework retry as needed.
I have no problem with there being people who choose not to use
this approach. What I'm asking is that they not insist on
PostgreSQL being needlessly crippled for those who *do* use it this
way.
> It's impossible to fix the round trip
> issue, at least provably, because there is no way to know for sure
> that the serialization failure is coming from this exact insertion, or
> say, a dependent trigger (aside: the idiomatic example aught to be
> checking the table name!) such that your loop (either here or from
> application) would execute a bazillion times until some other
> transaction clears.
Until the inserting transaction commits, it would block the other
insertion attempt, so the above is simply wrong. We do our best in
our serializable implementation to avoid a situation where a
transaction retry can hit the same set of conflicting transactions.
Doing so is *extremely* rare except in the case of a prepared
transaction which is left hanging for a long time. There's no
getting around the possibility of some serializable transaction
head-banging in that case, I'm afraid; but otherwise, the above is
not generally an issue. Now, Andres showed that using serializable
transactions to manage access to a table that is being used as a
queue is a pessimal case; I can see using some form of explicit
locking and a lower isolation level for accessing a queue.
> OK, this is a mostly academic detail, but the
> picture is not so clear as you're saying, I think; you're travelling
> at high speed in uncertain waters.
Hardly. Alan Fekete has published a series of papers on the
subject, over more than a decade (starting, as far as I'm aware,
with one funded by the National Science Foundation). This work was
building on work of Atul Adya of MIT. One of the findings I
remember from a paper where Alan Fekete was an author showed that
adding sufficient explicit locks to software using snapshot
isolation to make is safe *in the general case* dragged performance
and concurrency down to the levels of S2PL. (I'm sorry I don't
have the citation for that -- there were so many papers he authored
or co-authored on this topic it would probably take hours to find
that one.) Alan Fekete was one of the authors on the paper which
got me started looking at this technique[1]. (That paper won "best
paper" at ACM SIGMOD 2008, BTW.) We incorporated enhancements to
the paper which were in Michael Cahill's doctoral work[2], as well
as further enhancements that Dan Ports of MIT and I came up with
during development (which were subsequently reviewed by Michael
Cahill and Alan Fekete). Practical aspects of the implementation
incorporate suggestions (and sometimes code) from others in the
PostgreSQL community -- see Section 10 of [3].
> The key point here is that OP issued a SELECT first, and he's chaining
> DML decisions to the output of that select. He's expecting that SELECT
> to be protected via ACID, but it isn't and can't be unless you're
> prepared to predicate lock every row selected.
Yes, that is what happens when you run at the serializable
transaction isolation level.
> What he wants is for the database to bounce his transaction
> because the select lied to him, but that can't be done obviously.
It can and is done. Please review the cited papers and/or look at
the Wiki page of practical examples I have created:
https://wiki.postgresql.org/wiki/SSI
>> I'm curious how heavily you use serializable transactions, because
>> I have trouble believing that those who rely on them as their
>> primary (or only) strategy for dealing with race conditions under
>> high concurrency would take that position.
>
> I don't use them much, admittedly. That said, I don't use them as
> race condition guards.
Well, that is their entire and only purpose, and they are of no use
at all unless used consistently for all transactions (or all but
carefully considered exceptional circumstances, like queues).
> I use locks or other techniques to manage the problem.
I think most people on this list do. In my experience, it is only
the large shops with tens of thousands of transaction types and
dozens of programmers modifying and adding new transaction types
while other run ad hoc queries that the serializable transactions
become important. My experiences on this list have show me that
unless you have worked in a shop where the above are true and they
have therefore moved to the "write each transaction so that it does
the right thing when run by itself and our framework will cover all
concurrency issues with serializable transactions and retries on
serialization failures" you will not really understand why
consistent return of a serialization failure indication for
problems caused by concurrent transactions is so important.
> I tend to build out applications on top of functions and the
> inability to set isolation mode inside a function confounds me
> from using anything but 'read committed'.
Hey, no problem -- just set default_transaction_isolation =
'serializable' in your postgresql.conf file and never override
isolation level and you'll never have to use an explicit table lock
or SELECT FOR UPDATE again. While you're at it, set
default_transaction_read_only = on and only override it for
transactions that (might) need to update and you'll have dodged the
worst of the performance problems from serializable transactions.
--
Kevin Grittner
EDB: http://www.enterprisedb.com
The Enterprise PostgreSQL Company
[1] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008.
* Serializable isolation for snapshot databases.
* In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD
* international conference on Management of data,
* pages 729-738, New York, NY, USA. ACM.
* http://doi.acm.org/10.1145/1376616.1376690
[2] Michael James Cahill. 2009.
* Serializable Isolation for Snapshot Databases.
* Sydney Digital Theses.
* University of Sydney, School of Information Technologies.
* http://hdl.handle.net/2123/5353
[3] Dan R. K. Ports and Kevin Grittner. 2012.
* Serializable Snapshot Isolation in PostgreSQL.
* Proceedings of the VLDB Endowment, Vol. 5, No. 12.
* The 38th International Conference on Very Large Data Bases,
* August 27th - 31st 2012, Istanbul, Turkey.
* http://vldb.org/pvldb/vol5/p1850_danrkports_vldb2012.pdf
From | Date | Subject | |
---|---|---|---|
Next Message | Kevin Grittner | 2014-12-29 21:59:46 | Re: BUG #12330: ACID is broken for unique constraints |
Previous Message | Merlin Moncure | 2014-12-29 20:07:44 | Re: BUG #12330: ACID is broken for unique constraints |
From | Date | Subject | |
---|---|---|---|
Next Message | Bruce Momjian | 2014-12-29 21:59:05 | Re: Misaligned BufferDescriptors causing major performance problems on AMD |
Previous Message | Adam Brightwell | 2014-12-29 21:34:14 | Re: Additional role attributes && superuser review |