PostgreSQL 8.4.22 Documentation | ||||
---|---|---|---|---|
Prev | Fast Backward | Chapter 50. Index Access Method Interface Definition | Fast Forward | Next |
The index construction and maintenance functions that an index access method must provide are:
IndexBuildResult * ambuild (Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo);
Build a new index. The index relation has been physically
created, but is empty. It must be filled in with whatever fixed
data the access method requires, plus entries for all tuples
already existing in the table. Ordinarily the ambuild
function will call IndexBuildHeapScan()
to scan the table for
existing tuples and compute the keys that need to be inserted
into the index. The function must return a palloc'd struct
containing statistics about the new index.
bool aminsert (Relation indexRelation, Datum *values, bool *isnull, ItemPointer heap_tid, Relation heapRelation, bool check_uniqueness);
Insert a new tuple into an existing index. The values and isnull arrays give the key values to be indexed, and heap_tid is the TID to be indexed. If the access method supports unique indexes (its pg_am.amcanunique flag is true) then check_uniqueness might be true, in which case the access method must verify that there is no conflicting row; this is the only situation in which the access method normally needs the heapRelation parameter. See Section 50.5 for details. The result is TRUE if an index entry was inserted, FALSE if not. (A FALSE result does not denote an error condition, but is used for cases such as an index method refusing to index a NULL.)
IndexBulkDeleteResult * ambulkdelete (IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state);
Delete tuple(s) from the index. This is a "bulk delete" operation that is intended to be
implemented by scanning the whole index and checking each entry
to see if it should be deleted. The passed-in callback function must be called, in the style
callback(TID,
callback_state) returns bool, to determine whether any
particular index entry, as identified by its referenced TID, is
to be deleted. Must return either NULL or a palloc'd struct
containing statistics about the effects of the deletion
operation. It is OK to return NULL if no information needs to be
passed on to amvacuumcleanup
.
Because of limited maintenance_work_mem, ambulkdelete
might need to be called more than
once when many tuples are to be deleted. The stats argument is the result of the previous call
for this index (it is NULL for the first call within a VACUUM operation). This allows the AM to
accumulate statistics across the whole operation. Typically,
ambulkdelete
will modify and return
the same struct if the passed stats is
not null.
IndexBulkDeleteResult * amvacuumcleanup (IndexVacuumInfo *info, IndexBulkDeleteResult *stats);
Clean up after a VACUUM operation
(zero or more ambulkdelete
calls).
This does not have to do anything beyond returning index
statistics, but it might perform bulk cleanup such as reclaiming
empty index pages. stats is whatever the
last ambulkdelete
call returned, or
NULL if ambulkdelete
was not called
because no tuples needed to be deleted. If the result is not NULL
it must be a palloc'd struct. The statistics it contains will be
used to update pg_class, and will be
reported by VACUUM if VERBOSE is given. It is OK to return NULL if the
index was not changed at all during the VACUUM operation, but otherwise correct stats
should be returned.
As of PostgreSQL 8.4,
amvacuumcleanup
will also be called
at completion of an ANALYZE operation.
In this case stats is always NULL and
any return value will be ignored. This case can be distinguished
by checking info->analyze_only. It is
recommended that the access method do nothing except post-insert
cleanup in such a call, and that only in an autovacuum worker
process.
void amcostestimate (PlannerInfo *root, IndexOptInfo *index, List *indexQuals, RelOptInfo *outer_rel, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation);
Estimate the costs of an index scan. This function is described fully in Section 50.6, below.
bytea * amoptions (ArrayType *reloptions, bool validate);
Parse and validate the reloptions array for an index. This is called only when a non-null reloptions array exists for the index. reloptions is a text array containing entries of the form name=value. The function should construct a bytea value, which will be copied into the rd_options field of the index's relcache entry. The data contents of the bytea value are open for the access method to define; most of the standard access methods use struct StdRdOptions. When validate is true, the function should report a suitable error message if any of the options are unrecognized or have invalid values; when validate is false, invalid entries should be silently ignored. (validate is false when loading options already stored in pg_catalog; an invalid entry could only be found if the access method has changed its rules for options, and in that case ignoring obsolete entries is appropriate.) It is OK to return NULL if default behavior is wanted.
The purpose of an index, of course, is to support scans for tuples matching an indexable WHERE condition, often called a qualifier or scan key. The semantics of index scanning are described more fully in Section 50.3, below. An index access method can support "plain" index scans, "bitmap" index scans, or both. The scan-related functions that an index access method must or may provide are:
IndexScanDesc ambeginscan (Relation indexRelation, int nkeys, ScanKey key);
Begin a new scan. The key array (of
length nkeys) describes the scan key(s)
for the index scan. The result must be a palloc'd struct. For
implementation reasons the index access method must create this struct by calling
RelationGetIndexScan()
. In most
cases ambeginscan
itself does
little beyond making that call; the interesting parts of
index-scan startup are in amrescan
.
boolean amgettuple (IndexScanDesc scan, ScanDirection direction);
Fetch the next tuple in the given scan, moving in the given
direction (forward or backward in the index). Returns TRUE if a
tuple was obtained, FALSE if no matching tuples remain. In the
TRUE case the tuple TID is stored into the scan structure. Note that "success" means only that the index contains an
entry that matches the scan keys, not that the tuple necessarily
still exists in the heap or will pass the caller's snapshot test.
On success, amgettuple
must also
set scan->xs_recheck to TRUE or
FALSE. FALSE means it is certain that the index entry matches the
scan keys. TRUE means this is not certain, and the conditions
represented by the scan keys must be rechecked against the heap
tuple after fetching it. This provision supports "lossy" index operators. Note that rechecking will
extend only to the scan conditions; a partial index predicate (if
any) is never rechecked by amgettuple
callers.
The amgettuple
function need
only be provided if the access method supports "plain" index scans. If it doesn't, the amgettuple field in its pg_am row must be set to zero.
int64 amgetbitmap (IndexScanDesc scan, TIDBitmap *tbm);
Fetch all tuples in the given scan and add them to the
caller-supplied TIDBitmap (that is, OR the set of tuple IDs into
whatever set is already in the bitmap). The number of tuples
fetched is returned (this might be just an approximate count, for
instance some AMs do not detect duplicates). While inserting
tuple IDs into the bitmap, amgetbitmap
can indicate that rechecking of the
scan conditions is required for specific tuple IDs. This is
analogous to the xs_recheck output
parameter of amgettuple
. Note: in
the current implementation, support for this feature is conflated
with support for lossy storage of the bitmap itself, and
therefore callers recheck both the scan conditions and the
partial index predicate (if any) for recheckable tuples. That
might not always be true, however. amgetbitmap
and amgettuple
cannot be used in the same index
scan; there are other restrictions too when using amgetbitmap
, as explained in Section 50.3.
The amgetbitmap
function need
only be provided if the access method supports "bitmap" index scans. If it doesn't, the
amgetbitmap field in its pg_am row must be set to zero.
void amrescan (IndexScanDesc scan, ScanKey key);
Restart the given scan, possibly with new scan keys (to
continue using the old keys, NULL is passed for key). Note that it is not possible for the number
of keys to be changed. In practice the restart feature is used
when a new outer tuple is selected by a nested-loop join and so a
new key comparison value is needed, but the scan key structure
remains the same. This function is also called by RelationGetIndexScan()
, so it is used for
initial setup of an index scan as well as rescanning.
void amendscan (IndexScanDesc scan);
End a scan and release resources. The scan struct itself should not be freed, but any locks or pins taken internally by the access method must be released.
void ammarkpos (IndexScanDesc scan);
Mark current scan position. The access method need only support one remembered scan position per scan.
void amrestrpos (IndexScanDesc scan);
Restore the scan to the most recently marked position.
By convention, the pg_proc entry for
an index access method function should show the correct number of
arguments, but declare them all as type internal (since most of the arguments have types that
are not known to SQL, and we don't want users calling the
functions directly anyway). The return type is declared as
void, internal, or
boolean as appropriate. The only exception
is amoptions
, which should be
correctly declared as taking text[] and
bool and returning bytea. This provision allows client code to execute
amoptions
to test validity of
options settings.