The amstrategies column exists to standardize comparisons across data types. For example, B-trees impose a strict ordering on keys, lesser to greater. Since PostgreSQL allows the user to define operators, PostgreSQL cannot look at the name of an operator (e.g., > or <) and tell what kind of comparison it is. In fact, some access methods don't impose any ordering at all. For example, R-trees express a rectangle-containment relationship, whereas a hashed data structure expresses only bitwise similarity based on the value of a hash function. PostgreSQL needs some consistent way of taking a qualification in your query, looking at the operator, and then deciding if a usable index exists. This implies that PostgreSQL needs to know, for example, that the <= and > operators partition a B-tree. PostgreSQL uses strategies to express these relationships between operators and the way they can be used to scan indexes.
Defining a new set of strategies is beyond the scope of this
discussion, but we'll explain how B-tree strategies work because
you'll need to know that to add a new B-tree operator class. In
the pg_am
table, the amstrategies column sets the number of
strategies defined for this access method. For B-trees, this
number is 5. The meanings of these strategies are shown in
Table
17-2.
Table 17-2. B-tree Strategies
Operation | Index |
---|---|
less than | 1 |
less than or equal | 2 |
equal | 3 |
greater than or equal | 4 |
greater than | 5 |
The idea is that you'll need to add operators corresponding to
these strategies to the pg_amop
relation (see below). The access method code can use these
strategy numbers, regardless of data type, to figure out how to
partition the B-tree, compute selectivity, and so on. Don't worry
about the details of adding operators yet; just understand that
there must be a set of these operators for int2, int4, oid, and all other data types on which a B-tree can
operate.