Table 9.33 shows the available functions for date/time value processing, with details appearing in the following subsections. Table 9.32 illustrates the behaviors of the basic arithmetic operators (+
, *
, etc.). For formatting functions, refer to Section 9.8. You should be familiar with the background information on date/time data types from Section 8.5.
In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types. Dates and timestamps (with or without time zone) are all comparable, while times (with or without time zone) and intervals can only be compared to other values of the same data type. When comparing a timestamp without time zone to a timestamp with time zone, the former value is assumed to be given in the time zone specified by the TimeZone configuration parameter, and is rotated to UTC for comparison to the latter value (which is already in UTC internally). Similarly, a date value is assumed to represent midnight in the TimeZone
zone when comparing it to a timestamp.
All the functions and operators described below that take time
or timestamp
inputs actually come in two variants: one that takes time with time zone
or timestamp with time zone
, and one that takes time without time zone
or timestamp without time zone
. For brevity, these variants are not shown separately. Also, the +
and *
operators come in commutative pairs (for example both date
+
integer
and integer
+
date
); we show only one of each such pair.
Table 9.32. Date/Time Operators
Operator Description Example(s) |
---|
Add a number of days to a date
|
Add an interval to a date
|
Add a time-of-day to a date
|
Add intervals
|
Add an interval to a timestamp
|
Add an interval to a time
|
Negate an interval
|
Subtract dates, producing the number of days elapsed
|
Subtract a number of days from a date
|
Subtract an interval from a date
|
Subtract times
|
Subtract an interval from a time
|
Subtract an interval from a timestamp
|
Subtract intervals
|
Subtract timestamps (converting 24-hour intervals into days, similarly to
|
Multiply an interval by a scalar
|
Divide an interval by a scalar
|
Table 9.33. Date/Time Functions
Function Description Example(s) |
---|
Subtract arguments, producing a “symbolic” result that uses years and months, rather than just days
|
Subtract argument from
|
Current date and time (changes during statement execution); see Section 9.9.5
|
Current date; see Section 9.9.5
|
Current time of day; see Section 9.9.5
|
Current time of day, with limited precision; see Section 9.9.5
|
Current date and time (start of current transaction); see Section 9.9.5
|
Current date and time (start of current transaction), with limited precision; see Section 9.9.5
|
Bin input into specified interval aligned with specified origin; see Section 9.9.3
|
Get timestamp subfield (equivalent to
|
Get interval subfield (equivalent to
|
Truncate to specified precision; see Section 9.9.2
|
Truncate to specified precision in the specified time zone; see Section 9.9.2
|
Truncate to specified precision; see Section 9.9.2
|
Get timestamp subfield; see Section 9.9.1
|
Get interval subfield; see Section 9.9.1
|
Test for finite date (not +/-infinity)
|
Test for finite timestamp (not +/-infinity)
|
Test for finite interval (currently always true)
|
Adjust interval, converting 30-day time periods to months
|
Adjust interval, converting 24-hour time periods to days
|
Adjust interval using
|
Current time of day; see Section 9.9.5
|
Current time of day, with limited precision; see Section 9.9.5
|
Current date and time (start of current transaction); see Section 9.9.5
|
Current date and time (start of current transaction), with limited precision; see Section 9.9.5
|
Create date from year, month and day fields (negative years signify BC)
|
Create interval from years, months, weeks, days, hours, minutes and seconds fields, each of which can default to zero
|
Create time from hour, minute and seconds fields
|
Create timestamp from year, month, day, hour, minute and seconds fields (negative years signify BC)
|
Create timestamp with time zone from year, month, day, hour, minute and seconds fields (negative years signify BC). If
|
Current date and time (start of current transaction); see Section 9.9.5
|
Current date and time (start of current statement); see Section 9.9.5
|
Current date and time (like
|
Current date and time (start of current transaction); see Section 9.9.5
|
Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with time zone
|
In addition to these functions, the SQL OVERLAPS
operator is supported:
(start1
,end1
) OVERLAPS (start2
,end2
) (start1
,length1
) OVERLAPS (start2
,length2
)
This expression yields true when two time periods (defined by their endpoints) overlap, false when they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time, or time stamp followed by an interval. When a pair of values is provided, either the start or the end can be written first; OVERLAPS
automatically takes the earlier value of the pair as the start. Each time period is considered to represent the half-open interval start
<=
time
<
end
, unless start
and end
are equal in which case it represents that single time instant. This means for instance that two time periods with only an endpoint in common do not overlap.
SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS (DATE '2001-10-30', DATE '2002-10-30'); Result:true
SELECT (DATE '2001-02-16', INTERVAL '100 days') OVERLAPS (DATE '2001-10-30', DATE '2002-10-30'); Result:false
SELECT (DATE '2001-10-29', DATE '2001-10-30') OVERLAPS (DATE '2001-10-30', DATE '2001-10-31'); Result:false
SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS (DATE '2001-10-30', DATE '2001-10-31'); Result:true
When adding an interval
value to (or subtracting an interval
value from) a timestamp with time zone
value, the days component advances or decrements the date of the timestamp with time zone
by the indicated number of days, keeping the time of day the same. Across daylight saving time changes (when the session time zone is set to a time zone that recognizes DST), this means interval '1 day'
does not necessarily equal interval '24 hours'
. For example, with the session time zone set to America/Denver
:
SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '1 day'; Result:2005-04-03 12:00:00-06
SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '24 hours'; Result:2005-04-03 13:00:00-06
This happens because an hour was skipped due to a change in daylight saving time at 2005-04-03 02:00:00
in time zone America/Denver
.
Note there can be ambiguity in the months
field returned by age
because different months have different numbers of days. PostgreSQL's approach uses the month from the earlier of the two dates when calculating partial months. For example, age('2004-06-01', '2004-04-30')
uses April to yield 1 mon 1 day
, while using May would yield 1 mon 2 days
because May has 31 days, while April has only 30.
Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform subtraction is to convert each value to a number of seconds using EXTRACT(EPOCH FROM ...)
, then subtract the results; this produces the number of seconds between the two values. This will adjust for the number of days in each month, timezone changes, and daylight saving time adjustments. Subtraction of date or timestamp values with the “-
” operator returns the number of days (24-hours) and hours/minutes/seconds between the values, making the same adjustments. The age
function returns years, months, days, and hours/minutes/seconds, performing field-by-field subtraction and then adjusting for negative field values. The following queries illustrate the differences in these approaches. The sample results were produced with timezone = 'US/Eastern'
; there is a daylight saving time change between the two dates used:
SELECT EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') - EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00'); Result:10537200.000000
SELECT (EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') - EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00')) / 60 / 60 / 24; Result:121.9583333333333333
SELECT timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01 12:00:00'; Result:121 days 23:00:00
SELECT age(timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01 12:00:00'); Result:4 mons
EXTRACT
, date_part
EXTRACT(field
FROMsource
)
The extract
function retrieves subfields such as year or hour from date/time values. source
must be a value expression of type timestamp
, date
, time
, or interval
. (Timestamps and times can be with or without time zone.) field
is an identifier or string that selects what field to extract from the source value. Not all fields are valid for every input data type; for example, fields smaller than a day cannot be extracted from a date
, while fields of a day or more cannot be extracted from a time
. The extract
function returns values of type numeric
.
The following are valid field names:
century
The century; for interval
values, the year field divided by 100
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13'); Result:20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40'); Result:21
SELECT EXTRACT(CENTURY FROM DATE '0001-01-01 AD'); Result:1
SELECT EXTRACT(CENTURY FROM DATE '0001-12-31 BC'); Result:-1
SELECT EXTRACT(CENTURY FROM INTERVAL '2001 years'); Result:20
day
The day of the month (1–31); for interval
values, the number of days
SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40'); Result:16
SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute'); Result:40
decade
The year field divided by 10
SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200
dow
The day of the week as Sunday (0
) to Saturday (6
)
SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5
Note that extract
's day of the week numbering differs from that of the to_char(..., 'D')
function.
doy
The day of the year (1–365/366)
SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47
epoch
For timestamp with time zone
values, the number of seconds since 1970-01-01 00:00:00 UTC (negative for timestamps before that); for date
and timestamp
values, the nominal number of seconds since 1970-01-01 00:00:00, without regard to timezone or daylight-savings rules; for interval
values, the total number of seconds in the interval
SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08'); Result:982384720.120000
SELECT EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40.12'); Result:982355920.120000
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours'); Result:442800.000000
You can convert an epoch value back to a timestamp with time zone
with to_timestamp
:
SELECT to_timestamp(982384720.12);
Result: 2001-02-17 04:38:40.12+00
Beware that applying to_timestamp
to an epoch extracted from a date
or timestamp
value could produce a misleading result: the result will effectively assume that the original value had been given in UTC, which might not be the case.
hour
The hour field (0–23 in timestamps, unrestricted in intervals)
SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20
isodow
The day of the week as Monday (1
) to Sunday (7
)
SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7
This is identical to dow
except for Sunday. This matches the ISO 8601 day of the week numbering.
isoyear
The ISO 8601 week-numbering year that the date falls in
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01'); Result:2005
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02'); Result:2006
Each ISO 8601 week-numbering year begins with the Monday of the week containing the 4th of January, so in early January or late December the ISO year may be different from the Gregorian year. See the week
field for more information.
julian
The Julian Date corresponding to the date or timestamp. Timestamps that are not local midnight result in a fractional value. See Section B.7 for more information.
SELECT EXTRACT(JULIAN FROM DATE '2006-01-01'); Result:2453737
SELECT EXTRACT(JULIAN FROM TIMESTAMP '2006-01-01 12:00'); Result:2453737.50000000000000000000
microseconds
The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full seconds
SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000
millennium
The millennium; for interval
values, the year field divided by 1000
SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40'); Result:3
SELECT EXTRACT(MILLENNIUM FROM INTERVAL '2001 years'); Result:2
Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.
milliseconds
The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.
SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500.000
minute
The minutes field (0–59)
SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38
month
The number of the month within the year (1–12); for interval
values, the number of months modulo 12 (0–11)
SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40'); Result:2
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months'); Result:3
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months'); Result:1
quarter
The quarter of the year (1–4) that the date is in
SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1
second
The seconds field, including any fractional seconds
SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40'); Result:40.000000
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5'); Result:28.500000
timezone
The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east of UTC, negative values to zones west of UTC. (Technically, PostgreSQL does not use UTC because leap seconds are not handled.)
timezone_hour
The hour component of the time zone offset
timezone_minute
The minute component of the time zone offset
week
The number of the ISO 8601 week-numbering week of the year. By definition, ISO weeks start on Mondays and the first week of a year contains January 4 of that year. In other words, the first Thursday of a year is in week 1 of that year.
In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or 53rd week of the previous year, and for late-December dates to be part of the first week of the next year. For example, 2005-01-01
is part of the 53rd week of year 2004, and 2006-01-01
is part of the 52nd week of year 2005, while 2012-12-31
is part of the first week of 2013. It's recommended to use the isoyear
field together with week
to get consistent results.
SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7
year
The year field. Keep in mind there is no 0 AD
, so subtracting BC
years from AD
years should be done with care.
SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001
When processing an interval
value, the extract
function produces field values that match the interpretation used by the interval output function. This can produce surprising results if one starts with a non-normalized interval representation, for example:
SELECT INTERVAL '80 minutes'; Result:01:20:00
SELECT EXTRACT(MINUTES FROM INTERVAL '80 minutes'); Result:20
When the input value is +/-Infinity, extract
returns +/-Infinity for monotonically-increasing fields (epoch
, julian
, year
, isoyear
, decade
, century
, and millennium
). For other fields, NULL is returned. PostgreSQL versions before 9.6 returned zero for all cases of infinite input.
The extract
function is primarily intended for computational processing. For formatting date/time values for display, see Section 9.8.
The date_part
function is modeled on the traditional Ingres equivalent to the SQL-standard function extract
:
date_part('field
',source
)
Note that here the field
parameter needs to be a string value, not a name. The valid field names for date_part
are the same as for extract
. For historical reasons, the date_part
function returns values of type double precision
. This can result in a loss of precision in certain uses. Using extract
is recommended instead.
SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40'); Result:16
SELECT date_part('hour', INTERVAL '4 hours 3 minutes'); Result:4
date_trunc
The function date_trunc
is conceptually similar to the trunc
function for numbers.
date_trunc(field
,source
[,time_zone
])
source
is a value expression of type timestamp
, timestamp with time zone
, or interval
. (Values of type date
and time
are cast automatically to timestamp
or interval
, respectively.) field
selects to which precision to truncate the input value. The return value is likewise of type timestamp
, timestamp with time zone
, or interval
, and it has all fields that are less significant than the selected one set to zero (or one, for day and month).
Valid values for field
are:
microseconds |
milliseconds |
second |
minute |
hour |
day |
week |
month |
quarter |
year |
decade |
century |
millennium |
When the input value is of type timestamp with time zone
, the truncation is performed with respect to a particular time zone; for example, truncation to day
produces a value that is midnight in that zone. By default, truncation is done with respect to the current TimeZone setting, but the optional time_zone
argument can be provided to specify a different time zone. The time zone name can be specified in any of the ways described in Section 8.5.3.
A time zone cannot be specified when processing timestamp without time zone
or interval
inputs. These are always taken at face value.
Examples (assuming the local time zone is America/New_York
):
SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40'); Result:2001-02-16 20:00:00
SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40'); Result:2001-01-01 00:00:00
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00'); Result:2001-02-16 00:00:00-05
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00', 'Australia/Sydney'); Result:2001-02-16 08:00:00-05
SELECT date_trunc('hour', INTERVAL '3 days 02:47:33'); Result:3 days 02:00:00
date_bin
The function date_bin
“bins” the input timestamp into the specified interval (the stride) aligned with a specified origin.
date_bin(stride
,source
,origin
)
source
is a value expression of type timestamp
or timestamp with time zone
. (Values of type date
are cast automatically to timestamp
.) stride
is a value expression of type interval
. The return value is likewise of type timestamp
or timestamp with time zone
, and it marks the beginning of the bin into which the source
is placed.
Examples:
SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01'); Result:2020-02-11 15:30:00
SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP '2001-01-01 00:02:30'); Result:2020-02-11 15:32:30
In the case of full units (1 minute, 1 hour, etc.), it gives the same result as the analogous date_trunc
call, but the difference is that date_bin
can truncate to an arbitrary interval.
The stride
interval must be greater than zero and cannot contain units of month or larger.
AT TIME ZONE
The AT TIME ZONE
operator converts time stamp without time zone to/from time stamp with time zone, and time with time zone
values to different time zones. Table 9.34 shows its variants.
Table 9.34. AT TIME ZONE
Variants
Operator Description Example(s) |
---|
Converts given time stamp without time zone to time stamp with time zone, assuming the given value is in the named time zone.
|
Converts given time stamp with time zone to time stamp without time zone, as the time would appear in that zone.
|
Converts given time with time zone to a new time zone. Since no date is supplied, this uses the currently active UTC offset for the named destination zone.
|
In these expressions, the desired time zone zone
can be specified either as a text value (e.g., 'America/Los_Angeles'
) or as an interval (e.g., INTERVAL '-08:00'
). In the text case, a time zone name can be specified in any of the ways described in Section 8.5.3. The interval case is only useful for zones that have fixed offsets from UTC, so it is not very common in practice.
Examples (assuming the current TimeZone setting is America/Los_Angeles
):
SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver'; Result:2001-02-16 19:38:40-08
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'America/Denver'; Result:2001-02-16 18:38:40
SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'Asia/Tokyo' AT TIME ZONE 'America/Chicago'; Result:2001-02-16 05:38:40
The first example adds a time zone to a value that lacks it, and displays the value using the current TimeZone
setting. The second example shifts the time stamp with time zone value to the specified time zone, and returns the value without a time zone. This allows storage and display of values different from the current TimeZone
setting. The third example converts Tokyo time to Chicago time.
The function
is equivalent to the SQL-conforming construct timezone
(zone
, timestamp
)
.timestamp
AT TIME ZONE zone
PostgreSQL provides a number of functions that return values related to the current date and time. These SQL-standard functions all return values based on the start time of the current transaction:
CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP CURRENT_TIME(precision
) CURRENT_TIMESTAMP(precision
) LOCALTIME LOCALTIMESTAMP LOCALTIME(precision
) LOCALTIMESTAMP(precision
)
CURRENT_TIME
and CURRENT_TIMESTAMP
deliver values with time zone; LOCALTIME
and LOCALTIMESTAMP
deliver values without time zone.
CURRENT_TIME
, CURRENT_TIMESTAMP
, LOCALTIME
, and LOCALTIMESTAMP
can optionally take a precision parameter, which causes the result to be rounded to that many fractional digits in the seconds field. Without a precision parameter, the result is given to the full available precision.
Some examples:
SELECT CURRENT_TIME; Result:14:39:53.662522-05
SELECT CURRENT_DATE; Result:2019-12-23
SELECT CURRENT_TIMESTAMP; Result:2019-12-23 14:39:53.662522-05
SELECT CURRENT_TIMESTAMP(2); Result:2019-12-23 14:39:53.66-05
SELECT LOCALTIMESTAMP; Result:2019-12-23 14:39:53.662522
Since these functions return the start time of the current transaction, their values do not change during the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent notion of the “current” time, so that multiple modifications within the same transaction bear the same time stamp.
Other database systems might advance these values more frequently.
PostgreSQL also provides functions that return the start time of the current statement, as well as the actual current time at the instant the function is called. The complete list of non-SQL-standard time functions is:
transaction_timestamp() statement_timestamp() clock_timestamp() timeofday() now()
transaction_timestamp()
is equivalent to CURRENT_TIMESTAMP
, but is named to clearly reflect what it returns. statement_timestamp()
returns the start time of the current statement (more specifically, the time of receipt of the latest command message from the client). statement_timestamp()
and transaction_timestamp()
return the same value during the first command of a transaction, but might differ during subsequent commands. clock_timestamp()
returns the actual current time, and therefore its value changes even within a single SQL command. timeofday()
is a historical PostgreSQL function. Like clock_timestamp()
, it returns the actual current time, but as a formatted text
string rather than a timestamp with time zone
value. now()
is a traditional PostgreSQL equivalent to transaction_timestamp()
.
All the date/time data types also accept the special literal value now
to specify the current date and time (again, interpreted as the transaction start time). Thus, the following three all return the same result:
SELECT CURRENT_TIMESTAMP; SELECT now(); SELECT TIMESTAMP 'now'; -- but see tip below
Do not use the third form when specifying a value to be evaluated later, for example in a DEFAULT
clause for a table column. The system will convert now
to a timestamp
as soon as the constant is parsed, so that when the default value is needed, the time of the table creation would be used! The first two forms will not be evaluated until the default value is used, because they are function calls. Thus they will give the desired behavior of defaulting to the time of row insertion. (See also Section 8.5.1.4.)
The following functions are available to delay execution of the server process:
pg_sleep (double precision
) pg_sleep_for (interval
) pg_sleep_until (timestamp with time zone
)
pg_sleep
makes the current session's process sleep until the given number of seconds have elapsed. Fractional-second delays can be specified. pg_sleep_for
is a convenience function to allow the sleep time to be specified as an interval
. pg_sleep_until
is a convenience function for when a specific wake-up time is desired. For example:
SELECT pg_sleep(1.5); SELECT pg_sleep_for('5 minutes'); SELECT pg_sleep_until('tomorrow 03:00');
The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value. The sleep delay will be at least as long as specified. It might be longer depending on factors such as server load. In particular, pg_sleep_until
is not guaranteed to wake up exactly at the specified time, but it will not wake up any earlier.
Make sure that your session does not hold more locks than necessary when calling pg_sleep
or its variants. Otherwise other sessions might have to wait for your sleeping process, slowing down the entire system.
If you see anything in the documentation that is not correct, does not match your experience with the particular feature or requires further clarification, please use this form to report a documentation issue.