The TSM handler function returns a palloc'd TsmRoutine
struct containing pointers to the support functions described below. Most of the functions are required, but some are optional, and those pointers can be NULL.
void SampleScanGetSampleSize (PlannerInfo *root, RelOptInfo *baserel, List *paramexprs, BlockNumber *pages, double *tuples);
This function is called during planning. It must estimate the number of relation pages that will be read during a sample scan, and the number of tuples that will be selected by the scan. (For example, these might be determined by estimating the sampling fraction, and then multiplying the baserel->pages
and baserel->tuples
numbers by that, being sure to round the results to integral values.) The paramexprs
list holds the expression(s) that are parameters to the TABLESAMPLE
clause. It is recommended to use estimate_expression_value()
to try to reduce these expressions to constants, if their values are needed for estimation purposes; but the function must provide size estimates even if they cannot be reduced, and it should not fail even if the values appear invalid (remember that they're only estimates of what the run-time values will be). The pages
and tuples
parameters are outputs.
void InitSampleScan (SampleScanState *node, int eflags);
Initialize for execution of a SampleScan plan node. This is called during executor startup. It should perform any initialization needed before processing can start. The SampleScanState
node has already been created, but its tsm_state
field is NULL. The InitSampleScan
function can palloc whatever internal state data is needed by the sampling method, and store a pointer to it in node->tsm_state
. Information about the table to scan is accessible through other fields of the SampleScanState
node (but note that the node->ss.ss_currentScanDesc
scan descriptor is not set up yet). eflags
contains flag bits describing the executor's operating mode for this plan node.
When (eflags & EXEC_FLAG_EXPLAIN_ONLY)
is true, the scan will not actually be performed, so this function should only do the minimum required to make the node state valid for EXPLAIN
and EndSampleScan
.
This function can be omitted (set the pointer to NULL), in which case BeginSampleScan
must perform all initialization needed by the sampling method.
void BeginSampleScan (SampleScanState *node, Datum *params, int nparams, uint32 seed);
Begin execution of a sampling scan. This is called just before the first attempt to fetch a tuple, and may be called again if the scan needs to be restarted. Information about the table to scan is accessible through fields of the SampleScanState
node (but note that the node->ss.ss_currentScanDesc
scan descriptor is not set up yet). The params
array, of length nparams
, contains the values of the parameters supplied in the TABLESAMPLE
clause. These will have the number and types specified in the sampling method's parameterTypes
list, and have been checked to not be null. seed
contains a seed to use for any random numbers generated within the sampling method; it is either a hash derived from the REPEATABLE
value if one was given, or the result of random()
if not.
This function may adjust the fields node->use_bulkread
and node->use_pagemode
. If node->use_bulkread
is true
, which it is by default, the scan will use a buffer access strategy that encourages recycling buffers after use. It might be reasonable to set this to false
if the scan will visit only a small fraction of the table's pages. If node->use_pagemode
is true
, which it is by default, the scan will perform visibility checking in a single pass for all tuples on each visited page. It might be reasonable to set this to false
if the scan will select only a small fraction of the tuples on each visited page. That will result in fewer tuple visibility checks being performed, though each one will be more expensive because it will require more locking.
If the sampling method is marked repeatable_across_scans
, it must be able to select the same set of tuples during a rescan as it did originally, that is a fresh call of BeginSampleScan
must lead to selecting the same tuples as before (if the TABLESAMPLE
parameters and seed don't change).
BlockNumber NextSampleBlock (SampleScanState *node);
Returns the block number of the next page to be scanned, or InvalidBlockNumber
if no pages remain to be scanned.
This function can be omitted (set the pointer to NULL), in which case the core code will perform a sequential scan of the entire relation. Such a scan can use synchronized scanning, so that the sampling method cannot assume that the relation pages are visited in the same order on each scan.
OffsetNumber NextSampleTuple (SampleScanState *node, BlockNumber blockno, OffsetNumber maxoffset);
Returns the offset number of the next tuple to be sampled on the specified page, or InvalidOffsetNumber
if no tuples remain to be sampled. maxoffset
is the largest offset number in use on the page.
NextSampleTuple
is not explicitly told which of the offset numbers in the range 1 .. maxoffset
actually contain valid tuples. This is not normally a problem since the core code ignores requests to sample missing or invisible tuples; that should not result in any bias in the sample. However, if necessary, the function can examine node->ss.ss_currentScanDesc->rs_vistuples[]
to identify which tuples are valid and visible. (This requires node->use_pagemode
to be true
.)
NextSampleTuple
must not assume that blockno
is the same page number returned by the most recent NextSampleBlock
call. It was returned by some previous NextSampleBlock
call, but the core code is allowed to call NextSampleBlock
in advance of actually scanning pages, so as to support prefetching. It is OK to assume that once sampling of a given page begins, successive NextSampleTuple
calls all refer to the same page until InvalidOffsetNumber
is returned.
void EndSampleScan (SampleScanState *node);
End the scan and release resources. It is normally not important to release palloc'd memory, but any externally-visible resources should be cleaned up. This function can be omitted (set the pointer to NULL) in the common case where no such resources exist.