The citext
module provides a case-insensitive character string type, citext
. Essentially, it internally calls lower
when comparing values. Otherwise, it behaves almost exactly like text
.
The standard approach to doing case-insensitive matches in PostgreSQL has been to use the lower
function when comparing values, for example
SELECT * FROM tab WHERE lower(col) = LOWER(?);
This works reasonably well, but has a number of drawbacks:
It makes your SQL statements verbose, and you always have to remember to use lower
on both the column and the query value.
It won't use an index, unless you create a functional index using lower
.
If you declare a column as UNIQUE
or PRIMARY KEY
, the implicitly generated index is case-sensitive. So it's useless for case-insensitive searches, and it won't enforce uniqueness case-insensitively.
The citext
data type allows you to eliminate calls to lower
in SQL queries, and allows a primary key to be case-insensitive. citext
is locale-aware, just like text
, which means that the matching of upper case and lower case characters is dependent on the rules of the database's LC_CTYPE
setting. Again, this behavior is identical to the use of lower
in queries. But because it's done transparently by the data type, you don't have to remember to do anything special in your queries.
Here's a simple example of usage:
CREATE TABLE users ( nick CITEXT PRIMARY KEY, pass TEXT NOT NULL ); INSERT INTO users VALUES ( 'larry', sha256(random()::text::bytea) ); INSERT INTO users VALUES ( 'Tom', sha256(random()::text::bytea) ); INSERT INTO users VALUES ( 'Damian', sha256(random()::text::bytea) ); INSERT INTO users VALUES ( 'NEAL', sha256(random()::text::bytea) ); INSERT INTO users VALUES ( 'Bjørn', sha256(random()::text::bytea) ); SELECT * FROM users WHERE nick = 'Larry';
The SELECT
statement will return one tuple, even though the nick
column was set to larry
and the query was for Larry
.
citext
performs comparisons by converting each string to lower case (as though lower
were called) and then comparing the results normally. Thus, for example, two strings are considered equal if lower
would produce identical results for them.
In order to emulate a case-insensitive collation as closely as possible, there are citext
-specific versions of a number of string-processing operators and functions. So, for example, the regular expression operators ~
and ~*
exhibit the same behavior when applied to citext
: they both match case-insensitively. The same is true for !~
and !~*
, as well as for the LIKE
operators ~~
and ~~*
, and !~~
and !~~*
. If you'd like to match case-sensitively, you can cast the operator's arguments to text
.
Similarly, all of the following functions perform matching case-insensitively if their arguments are citext
:
regexp_match()
regexp_matches()
regexp_replace()
regexp_split_to_array()
regexp_split_to_table()
replace()
split_part()
strpos()
translate()
For the regexp functions, if you want to match case-sensitively, you can specify the “c” flag to force a case-sensitive match. Otherwise, you must cast to text
before using one of these functions if you want case-sensitive behavior.
citext
's case-folding behavior depends on the LC_CTYPE
setting of your database. How it compares values is therefore determined when the database is created. It is not truly case-insensitive in the terms defined by the Unicode standard. Effectively, what this means is that, as long as you're happy with your collation, you should be happy with citext
's comparisons. But if you have data in different languages stored in your database, users of one language may find their query results are not as expected if the collation is for another language.
As of PostgreSQL 9.1, you can attach a COLLATE
specification to citext
columns or data values. Currently, citext
operators will honor a non-default COLLATE
specification while comparing case-folded strings, but the initial folding to lower case is always done according to the database's LC_CTYPE
setting (that is, as though COLLATE "default"
were given). This may be changed in a future release so that both steps follow the input COLLATE
specification.
citext
is not as efficient as text
because the operator functions and the B-tree comparison functions must make copies of the data and convert it to lower case for comparisons. It is, however, slightly more efficient than using lower
to get case-insensitive matching.
citext
doesn't help much if you need data to compare case-sensitively in some contexts and case-insensitively in other contexts. The standard answer is to use the text
type and manually use the lower
function when you need to compare case-insensitively; this works all right if case-insensitive comparison is needed only infrequently. If you need case-insensitive behavior most of the time and case-sensitive infrequently, consider storing the data as citext
and explicitly casting the column to text
when you want case-sensitive comparison. In either situation, you will need two indexes if you want both types of searches to be fast.
The schema containing the citext
operators must be in the current search_path
(typically public
); if it is not, the normal case-sensitive text
operators will be invoked instead.
David E. Wheeler <david@kineticode.com>
Inspired by the original citext
module by Donald Fraser.