
©Mitsubishi Electric Corporation

A M e t h o d f o r S c a l e - O u t o f
A g g r e g a t i o n U s i n g

P o s t g r e S Q L ' s B u i l t - i n S h a r d i n g

2 0 2 4 / 0 5 / 3 1

PostgreSQL Development Conference 2024

Yu k i F u j i i

©Mitsubishi Electric Corporation

 Mitsubishi Electric actively contributes to OSS communities to quickly
catch up the latest technology. I develop PostgreSQL's extensions
such as fdw in my work.

 In 2021, Mr. Pyhalov of Postgres Professional posted a patch which
allows PostgreSQL to scale out aggregation with built-in sharding★1.

 I have posted an improved version of this patch, which expands the
scope of parallelizable aggregate functions.

 At the end of 2023, several committers pointed out technical issues
with the patch I had posted.

 Today, I would like to explain to you the status of responses to these
comments and discuss how to advance this patch.

2

Introduct ion

★1 The thread is “Partial aggregate pushdown”.
https://www.postgresql.org/message-id/flat/cf744a8ee4d47bdabe1da9174d4f3dc9@postgrespro.ru

©Mitsubishi Electric Corporation

1. Built-in Sharding

2. Parallel Execution for Aggregation

3. Existing Patch

4. Proposal Patch

5. Reactions to Proposal Patch

6. Transmitting state value

7. Points for discussion

3

Table of contents

©Mitsubishi Electric Corporation

Bu i l t - i n Sha rd ing
1 .1 Benef i t s

 This feature allows for parallel reading and writing of data from one table across
multiple physical servers transparently.

 The server cluster is composed of worker nodes that execute processes in parallel
and the coordinator node that controls the workers.

4

High-speed processing of large-scale data using multiple servers
and PostgreSQL standard features★1.

table t

Worker node1

PostgreSQL user (client)

table t1
Worker node2

Coordinator node

select c1 from t
where c2 = 1

★1 This means that we use only features in the PostgreSQL official repository.
This is a point of difference with other similar technologies, such as Citus

1

table t2

©Mitsubishi Electric Corporation

Bu i l t - i n Sha rd ing
1 .2 Deve lopment S ta tus

5

Parallel processing for aggregation is needed(see wiki★1),
but it is currently not supported.

Parallel processing
is supported?

Operation

YesSelection
YesJoin
YesSort
NoAggregation
NoSubquery expression
NoUnion or Intersection

of sets

A list of major PostgreSQL operations and their support status(PG16)

1

★1 PostgreSQL wiki, Built-in Sharding
https://wiki.postgresql.org/wiki/Built-in_Sharding

Focus

©Mitsubishi Electric Corporation

Bu i l t - i n Sha rd ing
1 .3 Overa l l Mechan ism

6

Partitioning the coordinator's table into multiple child tables, and
linking them with the worker's table using SQL through postgres_fdw.

Table t

Child table1
（Foreign table）

Worker node1

Child table2
（Foreign table）

Table t1 Table t2

postgres_fdw
select val from t1
where val > 1

select val from t2
where val > 1postgres_fdw

Partitioning feature

Worker node2

Coordinator node

select val from t
where val > 1

1

PostgreSQL user (client)

SQL Interface

©Mitsubishi Electric Corporation

Aggregating individually on the worker,
integrating them on the coordinator in the final process.

2 . Pa ra l l e l Execu t i on fo r Aggrega t i on
2 .1 Overa l l Mechan ism

 In worker
 The transition process is performed for each record, updates the state value,

and transmits the state value to the coordinator.

 In coordinator
 The final process generates return values from state values received from workers.

[sum=2, count=1]

[sum=3, count=2]

[sum=300, count=100]

[sum=0, count=0]

State
Value

avg = 2

・・・
[sum=2, count=1]

[sum=200, count=150]

[sum=0, count=0]

・・・

sum ÷ count

Transition
(Worker)

Final
(Coordinator)

The flow of the average (avg) processing

2

c1=2

c1=1

c1=2

7

Transmitting
the state value to the

coordinator.

State
Value

State
Value

State
Value

State
Value

State
Value

State
Value

©Mitsubishi Electric Corporation

Transmitting
the state value to the

coordinator.

The state value generated by each worker
must be expressed as a return value of an aggregate function.

2 . Pa ra l l e l Execu t i on fo r Aggrega t i on
2 .2 Cha l l enges i n Bu i l t - i n Sha rd ing(1/2)

SQL Interface

2

[sum=2, count=1]

[sum=3, count=2]

[sum=300, count=100]

[sum=0, count=0]

avg = 2

・・・
[sum=2, count=1]

[sum=200, count=150]

[sum=0, count=0]

・・・

sum ÷ count

c1=2

c1=1

c1=2

8

This state value must be expressed
as a return value of an aggregate function.

FDW's
constraint.

State
Value

State
Value

State
Value

State
Value

State
Value

State
Value

State
Value

Transition
(Worker)

Final
(Coordinator)

The flow of the average (avg) processing

©Mitsubishi Electric Corporation

9

There is a bad case, in which a state value cannot be expressed
as a return value of any aggregate function.

sum=300

sum=0

sum=500

Good Case︓Total（sum）

Worker

・・・

2

sum

This can be
expressed as existing

sum function.

[sum=300, count=100]

[sum=0, count=0]

avg=2

Bad case︓Average（avg）

・・・

sum ÷ count

No existing aggregate
functions returning

count and sum.

2 . Pa ra l l e l Execu t i on fo r Aggrega t i on
2 .2 Cha l l enges i n Bu i l t - i n Sha rd ing(2 / 2)

State
Value

State
Value

State
Value

State
Value

Coordinator

Worker

Coordinator

©Mitsubishi Electric Corporation

Ex is t ing Patch

10

Mr. Pyhalov posted a patch which supports only good cases.

3

sum=300

sum=0

sum=500

・・・

sum

[sum=300, count=100]

[sum=0, count=0]

avg=2

・・・

Supported by
Mr. Pyhalov's patch.

Not supported by
Mr. Pyhalov's patch.

It is necessary to
convert the return
value to the state
value because of

PostgreSQL
implementation.

Worker

Coordinator Coordinator

Worker

State
Value

State
Value

State
Value

State
Value

Good case︓Total（sum） Bad case︓Average（avg）

sum ÷ count

©Mitsubishi Electric Corporation

 Processing of partial aggregate function
 Returning the state value after all transitions.
 Having the same transition as the original aggregate function.
 Having no final function★1.

11

Defining new aggregate functions which return the state value
(Partial aggregate function).

4

★1 However, if the state
value is internal type, a
default binary format
conversion(serialization
function) is necessary

4 . P roposa l Pa t ch
4 .2 Approach

[sum=300, count=100]

[sum=0, count=0]

avg=2

・・・

sum÷count
Coordinator

Worker

State
Value

State
Value

Resolved case︓Average（avg）

A new partial aggregate function.

=the return value of avg_p

©Mitsubishi Electric Corporation

 Result★1

 With existing PostgreSQL, aggregation speed decrease when the number of
workers is greater than 1. The reason for that is because the existing PostgreSQL
requires transmitting all target data from the worker to the coordinator.

12

4 . P roposa l Pa t ch
4 .2 Per formance Eva luat ion

Aggregation speed increases proportionally to the number of workers.

★1 Used a query
calculating an average
to one table(76GB)
(TPC-H query1).

Refer to
Supplement1

for the evaluation environment,
Supplement2

for the PostgreSQL settings.

4

1.00

3.13

4.93

0.43
0.40

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 1 2 3 4 5 6

Relative speed

The number of workers

×12

Proposal Patch

Existing PostgreSQL

©Mitsubishi Electric Corporation 13

5 Reac t i ons t o P roposa l Pa t ch
5 .1 The f i r s t comment

Adding a new partial aggregate function for each aggregate function
is complicated. (by Mr. Haas of EnterpriseDB)

 Issue1: Big catalog size
Theoretically, the size of the catalogs(pg_aggregate, pg_proc) will double.

 Issue2: Many additional codes
Many codes are needed for managing partial aggregate functions.

 Issue3: Manual definition of partial aggregate functions
There are many tasks for developers and the potential for mistakes.
While the definition processes can be automated, it needs for additional codes.

©Mitsubishi Electric Corporation 14

5 Reac t i ons t o P roposa l Pa t ch
5 .2 So lu t ion to the f i r s t comment

 I have prototyped the method proposed by Mr. Haas to add the following SQL
keyword.

 The patchʼs size has been reduced to a quarter compared to the version I initially
posted.

By adding a new SQL keyword to the aggregate expression,
partial aggregate functions have become unnecessary.

[sum=300, count=100]

[sum=0, count=0]

avg=2

・・・

sum÷count
Coordinator

Worker

State
Value

State
Value

Average（avg）

select
avg(PARTIAL_AGGREGATE c1)

from t

Means that returns the state value

select
PARTIAL_AGGREGATE avg(c1)

from t

©Mitsubishi Electric Corporation 15

5 Reac t i ons t o P roposa l Pa t ch
5 .3 The second comment

Ensure safety and compatibility for transmitting state value. (by Mr. Haas)

Coordinator

Worker
Worker's format

Coordinator's format

Issues relateted to transmitting state value

:State value

 Issue1: Compatibility
Cause1: The difference of PostgreSQL versions.
Cause2: The difference of server settings. Ex. Server encodings.

 Issue2: Safety
There is a possibility for change of the state value during transmission
due to security attacks or communication errors.

 Status
I have considered solutions. Not yet implemented. Need consensus.

Issue2: Not SafeIssue1: Not CompatibleIssue1: Not Compatible

©Mitsubishi Electric Corporation

Coordinator

16

6
Transmi t t ing s ta te va lue
6 .1 Proposa l cons idered(1/2)

 I define the standard format for transmitting state value,
which is fixed for each version of PostgreSQL.

 The coordinator decides the standard format version based on the worker's version.
(next slide for details)

By adding export and import functions for each aggregate function,
I can resolve the differences between nodes.

Worker Export function

Import function

Worker's version

Worker's format

Coordinator's format

Overall System of my approach

Standard format

:State value

:New component of
aggregate function

select agg(PARTIAL_AGGREGATE(ʻPG18'))
from t

The version of
the standard format

②
①

③

④

©Mitsubishi Electric Corporation

Coordinator
PG19

17

6
Transmi t t ing s ta te va lue
6 .1 Proposa l cons idered(2/2)

We need to make sure the compatibility of import/export functions,
when the coordinator's version is different from the worker's.

Worker
PG18

Export function

Import function

Worker's format

Coordinator's format

Coordinator's version > Worker's version

Standard format =PG18

Coordinator
PG18

Worker
PG19

Export function

Import function

Worker's format

Coordinator's format

Standard format =PG18

Coordinator's version <= Worker's version

 The standard format version is the minimum of the coordinator's and worker's
versions.

©Mitsubishi Electric Corporation 18

6
Transmi t t ing s ta te va lue
6 .2 Mod i f i c a t i on fo r i nd i v i dua l agg rega tes

Of the 131 built-in aggregate functions,
it is necessary to add export or import functions for 72 of them.

The types of validation check for import
ExplanationNo.
Checking the number of data items of the
state value.
Ex. Number of data items of avg's state
value must be 2(count and sum).

1

Checking the ranges for each data item of
the state value.
Ex. The number of records must be
nonnegative for avg.

2

Necessity of export/import for each built-in
aggregate function★1

CountExampleArg's typeNecessary?
59min, maxnot pseudoNo

67avg, countnot pseudoYes
(not hard)

5array_agg,
any_value,
range_
intersect_agg

pseudoYes
(hard)

131Total

★1 The target PostgreSQL version is 16

This type needs to accept
many actual data types,

including user-defined types

 Import functions have to check
validation, in addition to convert the
state value.

©Mitsubishi Electric Corporation 19

7 Po ints for d i scuss ion

 Transmitting state value
 Could you accept my proposal?
 I think it would be difficult to completely implement my proposal at once.

Would it be possible to commit a patch with the following constraints
first?
• The server versions of the coordinator and the worker match.
• Supported built-in aggregate functions are a few subset

(Ex. avg, sum, count, min, max).

 Aggregation in worker
 The SQL keyword to be added is non-standard, but are they acceptable?

©Mitsubishi Electric Corporation 20

8 Acknowledgement

 I would like to express my sincere gratitude to the following
developers for their extremely valuable comments on the basic
parts of the patch.
Mr. Pyhalov (Postgres Professional)
Mr. Haas (EnterpriseDB)
Mr. Momjian (EnterpriseDB)

Among others.

©Mitsubishi Electric Corporation 22

[Supp lement1] H/W, OS Set t ing

ExplanationItem
16Dev※1PostgreSQL
v17(The latest version at 2022/12/15)Our patch
Amazon Linux release2(Kernel 5.10)OS
m6in.xlargeEC2 instance type

4The number of vCPUs
16GBDRAM

gp2EBS Type
SSD, 1TBStorage

 Using AWS EC2
 The Coordinator and the workers are in the same subnet
 Settings of coordinator and workers are the following table

※1 コミットIDは8b6b043ceef29a0a7a462b748da398511832efcf(2022/12/15時点の最新版)

©Mitsubishi Electric Corporation 23

[Supp lement2] PostgreSQL Set t ing

ValueItem
4096MBshared_buffers
1024MBwork_mem

4max_parallel_workers_per_gather
onenable_partitionwise_aggregate

 PostgreSQL configuration parameters

 postgres_fdw configuration parameters
ValueItem
trueasync_capable
160000server_version

 Table
One child table per one EC2 instance

