From: | Fabien COELHO <coelho(at)cri(dot)ensmp(dot)fr> |
---|---|
To: | Thomas Munro <thomas(dot)munro(at)gmail(dot)com> |
Cc: | Hironobu SUZUKI <hironobu(at)interdb(dot)jp>, PostgreSQL Hackers <pgsql-hackers(at)lists(dot)postgresql(dot)org>, David Steele <david(at)pgmasters(dot)net> |
Subject: | Re: pgbench - add pseudo-random permutation function |
Date: | 2019-07-23 07:44:09 |
Message-ID: | alpine.DEB.2.21.1907230730150.7144@lancre |
Views: | Raw Message | Whole Thread | Download mbox | Resend email |
Thread: | |
Lists: | pgsql-hackers |
Hello Thomas,
>>> Function nbits(), which was previously discussed, has been simplified by
>>> using the function pg_popcount64().
>
> Hi Fabien, Suzuki-san,
>
> I am not smart enough to commit this
I'm in no hurry:-)
> or judge its value for benchmarking,
I think that it is valuable given that we have non uniform random
generators in pgbench.
I'm wondering about the modular_multiply manual implementation which adds
quite a few lines of non trivial code. If int128 is available on all/most
platforms, it could be removed and marked as not supported on these,
although it would create an issue with non regression tests.
> but I have a few trivial comments on the language:
>
> + It allows to mix the output of non uniform random functions so that
>
> "It allows the output of non-uniform random functions to be mixed so that"
Fixed.
> + ensures that a perfect permutation is applied: there are no collisions
> + nor holes in the output values.
>
> "neither collisions nor holes", or "no collisions or holes"
I choose the first.
> + The function errors if size is not positive.
>
> "raises an error"
Fixed.
> + * 24 bits mega primes from https://primes.utm.edu/lists/small/millions/
>
> "24 bit mega primes"
Fixed.
> +/* length of n binary representation */
> +static int
> +nbits(uint64 n)
> +{
> + /* set lower bits to 1 and count them */
> + return pg_popcount64(compute_mask(n));
> +}
>
> I suppose you could use n == 0 ? 0 : pg_leftmost_one_pos64(n) + 1, and then...
It would create a branch, that I'm trying to avoid.
> +/* return smallest mask holding n */
> +static uint64
> +compute_mask(uint64 n)
> +{
> + n |= n >> 1;
> + n |= n >> 2;
> + n |= n >> 4;
> + n |= n >> 8;
> + n |= n >> 16;
> + n |= n >> 32;
> + return n;
> +}
>
> ... here you could use 1 << nbits(n)) - 1. I have no idea if doing it
> that way around is better, it's just a thought and removes a few lines
> of bit-swizzling code.
This would create a infinite recursion as nbits currently uses
compute_mask. The 6 bitfield operation above is pretty efficient, I'd let
it at that.
Attached a v16.
--
Fabien.
Attachment | Content-Type | Size |
---|---|---|
pgbench-prp-func-16.patch | text/x-diff | 18.0 KB |
From | Date | Subject | |
---|---|---|---|
Next Message | Michael Paquier | 2019-07-23 08:04:32 | Re: Race conditions with TAP test for syncrep |
Previous Message | Michael Paquier | 2019-07-23 07:38:01 | Re: Add parallelism and glibc dependent only options to reindexdb |