PostgreSQL 8.3.23 Documentation | ||||
---|---|---|---|---|
Prev | Fast Backward | Chapter 12. Full Text Search | Fast Forward | Next |
To implement full text searching there must be a function to create a tsvector from a document and a tsquery from a user query. Also, we need to return results in a useful order, so we need a function that compares documents with respect to their relevance to the query. It's also important to be able to display the results nicely. PostgreSQL provides support for all of these functions.
PostgreSQL provides the
function to_tsvector
for
converting a document to the tsvector
data type.
to_tsvector([ config regconfig, ] document text) returns tsvector
to_tsvector
parses a textual
document into tokens, reduces the tokens to lexemes, and
returns a tsvector which lists the
lexemes together with their positions in the document. The
document is processed according to the specified or default
text search configuration. Here is a simple example:
SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat rats'); to_tsvector ----------------------------------------------------- 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4
In the example above we see that the resulting tsvector does not contain the words a, on, or it, the word rats became rat, and the punctuation sign - was ignored.
The to_tsvector
function
internally calls a parser which breaks the document text into
tokens and assigns a type to each token. For each token, a list
of dictionaries (Section
12.6) is consulted, where the list can vary depending on
the token type. The first dictionary that recognizes the token emits one or more
normalized lexemes to represent the
token. For example, rats became
rat because one of the dictionaries
recognized that the word rats is a
plural form of rat. Some words are
recognized as stop words (Section
12.6.1), which causes them to be ignored since they occur
too frequently to be useful in searching. In our example these
are a, on,
and it. If no dictionary in the list
recognizes the token then it is also ignored. In this example
that happened to the punctuation sign - because there are in fact no dictionaries
assigned for its token type (Space
symbols), meaning space tokens will never be indexed. The
choices of parser, dictionaries and which types of tokens to
index are determined by the selected text search configuration
(Section 12.7). It
is possible to have many different configurations in the same
database, and predefined configurations are available for
various languages. In our example we used the default
configuration english for the English
language.
The function setweight
can be
used to label the entries of a tsvector
with a given weight, where a weight is
one of the letters A, B, C, or D. This is typically used to mark entries coming
from different parts of a document, such as title versus body.
Later, this information can be used for ranking of search
results.
Because to_tsvector
(NULL) will return NULL,
it is recommended to use coalesce
whenever a field might be null. Here is the recommended method
for creating a tsvector from a structured
document:
UPDATE tt SET ti = setweight(to_tsvector(coalesce(title,'')), 'A') || setweight(to_tsvector(coalesce(keyword,'')), 'B') || setweight(to_tsvector(coalesce(abstract,'')), 'C') || setweight(to_tsvector(coalesce(body,'')), 'D');
Here we have used setweight
to
label the source of each lexeme in the finished tsvector, and then merged the labeled tsvector values using the tsvector concatenation operator ||. (Section
12.4.1 gives details about these operations.)
PostgreSQL provides the
functions to_tsquery
and
plainto_tsquery
for converting a
query to the tsquery data type.
to_tsquery
offers access to more
features than plainto_tsquery
,
but is less forgiving about its input.
to_tsquery([ config regconfig, ] querytext text) returns tsquery
to_tsquery
creates a
tsquery value from querytext, which must consist of single
tokens separated by the Boolean operators & (AND), | (OR) and
! (NOT). These operators can be
grouped using parentheses. In other words, the input to
to_tsquery
must already follow
the general rules for tsquery input, as
described in Section
8.11. The difference is that while basic tsquery input takes the tokens at face value,
to_tsquery
normalizes each token
to a lexeme using the specified or default configuration, and
discards any tokens that are stop words according to the
configuration. For example:
SELECT to_tsquery('english', 'The & Fat & Rats'); to_tsquery --------------- 'fat' & 'rat'
As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it to match only tsvector lexemes of those weight(s). For example:
SELECT to_tsquery('english', 'Fat | Rats:AB'); to_tsquery ------------------ 'fat' | 'rat':AB
to_tsquery
can also accept
single-quoted phrases. This is primarily useful when the
configuration includes a thesaurus dictionary that may trigger
on such phrases. In the example below, a thesaurus contains the
rule supernovae stars : sn:
SELECT to_tsquery('''supernovae stars'' & !crab'); to_tsquery --------------- 'sn' & !'crab'
Without quotes, to_tsquery
will generate a syntax error for tokens that are not separated
by an AND or OR operator.
plainto_tsquery([ config regconfig, ] querytext text) returns tsquery
plainto_tsquery
transforms
unformatted text querytext to
tsquery. The text is parsed and
normalized much as for to_tsvector
, then the & (AND) Boolean operator is inserted between
surviving words.
Example:
SELECT plainto_tsquery('english', 'The Fat Rats'); plainto_tsquery ----------------- 'fat' & 'rat'
Note that plainto_tsquery
cannot recognize either Boolean operators or weight labels in
its input:
SELECT plainto_tsquery('english', 'The Fat & Rats:C'); plainto_tsquery --------------------- 'fat' & 'rat' & 'c'
Here, all the input punctuation was discarded as being space symbols.
Ranking attempts to measure how relevant documents are to a particular query, so that when there are many matches the most relevant ones can be shown first. PostgreSQL provides two predefined ranking functions, which take into account lexical, proximity, and structural information; that is, they consider how often the query terms appear in the document, how close together the terms are in the document, and how important is the part of the document where they occur. However, the concept of relevancy is vague and very application-specific. Different applications might require additional information for ranking, e.g. document modification time. The built-in ranking functions are only examples. You can write your own ranking functions and/or combine their results with additional factors to fit your specific needs.
The two ranking functions currently available are:
ts_rank([ weights float4[], ] vector tsvector, query tsquery [, normalization integer ]) returns float4
Standard ranking function.
ts_rank_cd([ weights float4[], ] vector tsvector, query tsquery [, normalization integer ]) returns float4
This function computes the cover density ranking for the given document vector and query, as described in Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three Term Queries" in the journal "Information Processing and Management", 1999.
This function requires positional information in its input. Therefore it will not work on "stripped" tsvector values — it will always return zero.
For both these functions, the optional weights argument offers the ability to weigh word instances more or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each category of word, in the order:
{D-weight, C-weight, B-weight, A-weight}
If no weights are provided, then these defaults are used:
{0.1, 0.2, 0.4, 1.0}
Typically weights are used to mark words from special areas of the document, like the title or an initial abstract, so that they can be treated as more or less important than words in the document body.
Since a longer document has a greater chance of containing a query term it is reasonable to take into account document size, e.g. a hundred-word document with five instances of a search word is probably more relevant than a thousand-word document with five instances. Both ranking functions take an integer normalization option that specifies whether and how a document's length should impact its rank. The integer option controls several behaviors, so it is a bit mask: you can specify one or more behaviors using | (for example, 2|4).
0 (the default) ignores the document length
1 divides the rank by 1 + the logarithm of the document length
2 divides the rank by the document length
4 divides the rank by the mean harmonic distance between
extents (this is implemented only by ts_rank_cd
)
8 divides the rank by the number of unique words in document
16 divides the rank by 1 + the logarithm of the number of unique words in document
32 divides the rank by itself + 1
If more than one flag bit is specified, the transformations are applied in the order listed.
It is important to note that the ranking functions do not use any global information, so it is impossible to produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32 (rank/(rank+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a cosmetic change; it will not affect the ordering of the search results.
Here is an example that selects only the ten highest-ranked matches:
SELECT title, ts_rank_cd(textsearch, query) AS rank FROM apod, to_tsquery('neutrino|(dark & matter)') query WHERE query @@ textsearch ORDER BY rank DESC LIMIT 10; title | rank -----------------------------------------------+---------- Neutrinos in the Sun | 3.1 The Sudbury Neutrino Detector | 2.4 A MACHO View of Galactic Dark Matter | 2.01317 Hot Gas and Dark Matter | 1.91171 The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953 Rafting for Solar Neutrinos | 1.9 NGC 4650A: Strange Galaxy and Dark Matter | 1.85774 Hot Gas and Dark Matter | 1.6123 Ice Fishing for Cosmic Neutrinos | 1.6 Weak Lensing Distorts the Universe | 0.818218
This is the same example using normalized ranking:
SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */ ) AS rank FROM apod, to_tsquery('neutrino|(dark & matter)') query WHERE query @@ textsearch ORDER BY rank DESC LIMIT 10; title | rank -----------------------------------------------+------------------- Neutrinos in the Sun | 0.756097569485493 The Sudbury Neutrino Detector | 0.705882361190954 A MACHO View of Galactic Dark Matter | 0.668123210574724 Hot Gas and Dark Matter | 0.65655958650282 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973 Rafting for Solar Neutrinos | 0.655172410958162 NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637 Hot Gas and Dark Matter | 0.617195790024749 Ice Fishing for Cosmic Neutrinos | 0.615384618911517 Weak Lensing Distorts the Universe | 0.450010798361481
Ranking can be expensive since it requires consulting the tsvector of each matching document, which can be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical queries often result in large numbers of matches.
To present search results it is ideal to show a part of each
document and how it is related to the query. Usually, search
engines show fragments of the document with marked search
terms. PostgreSQL provides a
function ts_headline
that
implements this functionality.
ts_headline([ config regconfig, ] document text, query tsquery [, options text ]) returns text
ts_headline
accepts a document
along with a query, and returns an excerpt from the document in
which terms from the query are highlighted. The configuration
to be used to parse the document can be specified by config; if config is omitted, the default_text_search_config configuration is
used.
If an options string is specified it must consist of a comma-separated list of one or more option=value pairs. The available options are:
StartSel, StopSel: the strings with which query words appearing in the document should be delimited to distinguish them from other excerpted words.
MaxWords, MinWords: these numbers determine the longest and shortest headlines to output.
ShortWord: words of this length or less will be dropped at the start and end of a headline. The default value of three eliminates the English articles.
HighlightAll: Boolean flag; if true the whole document will be highlighted.
Any unspecified options receive these defaults:
StartSel=<b>, StopSel=</b>, MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE
For example:
SELECT ts_headline('english', 'The most common type of search is to find all documents containing given query terms and return them in order of their similarity to the query.', to_tsquery('query & similarity')); ts_headline ------------------------------------------------------------ given <b>query</b> terms and return them in order of their <b>similarity</b> to the <b>query</b>. SELECT ts_headline('english', 'The most common type of search is to find all documents containing given query terms and return them in order of their similarity to the query.', to_tsquery('query & similarity'), 'StartSel = <, StopSel = >'); ts_headline ------------------------------------------------------- given <query> terms and return them in order of their <similarity> to the <query>.
ts_headline
uses the original
document, not a tsvector summary, so it
can be slow and should be used with care. A typical mistake is
to call ts_headline
for
every matching
document when only ten documents are to be shown.
SQL subqueries can help;
here is an example:
SELECT id, ts_headline(body, q), rank FROM (SELECT id, body, q, ts_rank_cd(ti, q) AS rank FROM apod, to_tsquery('stars') q WHERE ti @@ q ORDER BY rank DESC LIMIT 10) AS foo;